
Abstract

This paper presents the design of a distributed multi-physics integration tool, with

the aim of providing high-level support for the integration of existing applications

into full featured multi-physics simulation tools. The abstract and application of inde-

pendent steering and data exchange are achieved by defining an application interface,

that has to be implemented by individual applications. The design supports various

coupling strategies and discretization techniques. The focus of the work presented is

on the distributed aspects of the framework design.

Keywords: multi-physics simulations, software integration, distributed simulations.

1 Introduction

Numerical simulations are now routinely used in research and industry and are ac-

cepted as reliable analysis tools. The existing knowledge in various disciplines has

been integrated into advanced simulation tools, that have been developed over many

years. To enable further progress in many fields, including structural and material

engineering, the integration of existing knowledge from different disciplines is neces-

sary. Therefore, one of the challenges in numerical modeling is to enable an efficient

use and inter-operation of a wide variety of problem-specific computational tools to

simulate, analyze, and understand complex, multi-physics problems [1, 2, 3, 4].

Traditionally, single purpose programs or shell scripts are used to integrate exist-

ing applications. Such an approach may initially look promising, but later it becomes

clear, that there are many restricting issues and limitations. Such an approach provides

a very low level of interoperability - data are usually exchanged using files, allowing

inter-operation at program level, rather than at function level, that allows to combine

different codes. Usually, substantial coding and deep understanding of the code struc-
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ture is required. The level of code reuse is typically very low and this makes extension

and maintenance quite hard.

At present, there are many multi-physics simulation codes available, notably COM-

SOL Multiphysics [5]; advanced multi-physics capabilities can be found in many

monolithic commercial codes (ADINA [6], MSC Nastran [7], ANSYS Multiphysics [8],

etc), as well as open-source programs (Elmer [9], OpenFOAM [10], etc). Several

frameworks have been developed to ease the implementation of large-scale, paral-

lel simulations, such as POOMA [11], Overture [12], SAMRAI [13], ALEGRA [14],

AVS [15], OASIS [16], SIERRA [17], and PALM [18], adopted for a number of multi-

physics simulations in computational fluid dynamics. These frameworks have brought

many innovations in computational and software technology, however, they are typi-

cally focused on specific techniques and applications and none of them has attracted a

large user base or has been widely adopted outside their field of application. A major

issue is the required conversion of software to make use of these frameworks. This

means rewriting, loss of control over many aspects of the software, and its dependence

on the framework itself.

The paper starts with introduction to the main objectives of the presented work.

Next, the object-oriented design of developed multi-physics integration tool [19] is

presented in Section 3, introducing the fundamental classes, discussing their role, in-

terface and mutual relations. The support for distributed multi-physics applications is

discussed in Section 4 and performance of distributed field mapping is illustrated on

several examples in Section 5.

2 Motivation

The main goal of the presented framework is to provide a high-level support for mutual

data exchange between codes, including support for different discretization techniques

and specific field transfer operators, aware of underlying physical phenomena. The

field representation and field exchange methods support various data types (scalar,

vector, and tensorial values). The role of high-level services is to provide a simple

and seamless data transfer between applications, which is independent of actual dis-

cretization. This naturally enables to design a general representation of solution fields,

that will provide high-level mapping and interpolation services, allowing to evaluate

solution fields at any point of problem domain and hiding all details of internal repre-

sentation. Unified data access services provided by the framework will also facilitate

other common tasks, such as post-processing. The implemented library is integrated

into interactive scripting Python [20, 21] environment.

Individual applications typically require specific meshes and even different dis-

cretization techniques. The underlying physics may also impose additional constraints

on mapping or interpolation operators, such as mass or energy conservation require-

ments. The object-oriented structure of the framework will naturally enable imple-

mentation of user-specific mapping and interpolation operators, as required by individ-
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ual problems under consideration. Efficient steering and data exchange require some

kind of control channel, implementing Application Interface. This channel would al-

low a framework to call the individual codes at appropriate times, handle exceptional

situations and request/update application data. Such an approach is very flexible and

allows communication with particular applications on an abstract level, permitting

easy addition/replacement of components.

The available strategies for handling coupled problem composed of individual com-

ponents (applications) can be divided into so-called strongly or weakly coupled schemes,

depending whether consistency of internal values across applications is required at

each global time step. In the case of strongly coupled scheme, the consistency based

on a global convergence is required, while in the weakly coupled scheme not. In both

approaches, a sequence of global time steps has to be established, based for example

on global Courant Friedrichs Lewy (CFL) condition, time-scale of relevant physical

phenomena, or accuracy constraints. Within the limits of the global time step, each

application can choose its own local time stepping.

The parallel and distributed applications and associated aspects are addressed as

well. The parallel applications typically come with distributed parallel data structure

and several application instances running on different processors. The application

interface design allows a unified application data access and steering, hiding the dif-

ferences between individual applications and allowing to manage serial and parallel

applications using the same interface. Moreover, the support for efficient parallel field

transfer of distributed data is incorporated.

The object oriented design naturally allows to group several application together

into one logical group, that can be manipulated using single interface. A task agent

will steer the individual applications within a group (using their application interfaces)

and will manage the inter-group data exchange. When task agent will itself implement

application interface, it can be at higher level regarded as a single application. The hi-

erarchical structure of cooperating agents and individual applications is characteristic

design pattern of proposed framework (see Fig. 1). Such design will allow to effi-

ciently utilize parallel and grid computing resources.

3 Framework design

The object-oriented data structure consists of several top level classes representing the

fundamental blocks of the Multi-Physics Integration Framework, called MuPIF [19].

Its overall structure is shown in Fig. 2 using UML notation (see [22] for details). A

first step is the abstraction of a computational domain, represented by a class derived

from abstract Domain class. The purpose of domain is to provide unified descrip-

tion of the geometry of problem domain, represented by a set of interpolation cells,

geometry of which is defined using vertices. The individual cells (represented by

corresponding classes, derived from base Cell class) may be of different type, to rep-

resent finite-volume or finite-element meshes or finite difference grids, for example.
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Figure 2: Design of MuPIF framework.

Domain class declares abstract services for spatial search (target cell location, for ex-

ample) and interpolation (based on given field data). Inheritance allows to extend this

approach and represent a subset of any domain using the same interface. Such subsets

(thereafter called views) are naturally required in many applications, as they may rep-

resent material regions, boundaries of domain, or even decomposition of domain into

partitions in case of parallel applications, for example. Usually there is one-to-one

relation between cells in view and cells in corresponding master domain, however, in

case of view representing boundary of a domain, the cell-types in the domain view

are different from domain cell-types, as they represent a subset of lower dimension.

To represent views, the framework introduces DomainView class, derived from Do-

main class. A direct consequence of being inherited from Domain class is the need to

implement interface defined by its parent. Thus, the DomainView class can be used

anywhere, where Domain class is expected. The mapping from master Domain to any

of its DomainView is defined by corresponding MappingContext class, which is an

attribute of DomainView. This class provides methods defining the mapping of view

vertices and cells to their counterparts on the master domain. In a such way, any num-

ber of domain views can be created, depending on application needs. Typically, the

instances of Domain are created by individual applications.

The individual fields may represent scalar, vector, or tensor quantities, defined on
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different types of discretizations. One of the main objectives is to obtain an abstract

representation of solution fields, allowing to evaluate individual fields at given position

and implement field transfer operators independently of underlying discretization. In

MuPIF, the solution fields are represented by hierarchy of classes derived from base

Field class, declaring the common abstract interface. Each Field class manages the

values associated to each vertex (or cell) of the corresponding domain. To support

fields of different types, the abstract FieldValue class has been defined, where derived

classes represent basic types of field values (scalar, vector, tensor, etc) and define

common operations. The base Field class defines fundamental services for field data

evaluation at given point. By relying on cell interpolation services, the implementa-

tion of Field is independent of particular type of mesh. Analogously to the concept

of domain view, the FieldView class (derived form Field) enables transparent repre-

sentation of field data associated to domain view. One may regard the FieldView as

a proxy class, that maps field view data defined on associated domain view to global

field data defined on master mesh. The FieldView, with associated DomainView (and

its MappingContext), uniquely defines the subset of field data represented by the field

view. Direct consequence of inheritance and domain abstraction allows to reuse many

Field class methods by FieldView class, including evaluate service.

For some applications, it may be beneficial for the field view to maintain its local

copy of master field data. This is particularly needed in distributed applications, where

the master mesh is distributed data structure and the domain view and field view may

represent data composed of contributions from different processors. In such a case,

the data access to individual field view data entries may be very slow and inefficient

due to non-locality of the source data. A logical solution is to maintain the local

copy of the data, thus data is transferred only once. At the same time, when the field

view data is updated, the changes can be recorded and later committed to master field.

Both described approaches are supported by corresponding classes derived from base

FieldView class.

The mutual data exchange between individual applications is assumed to happen

through field transfer operations. In this model, one or more applications (providers)

deliver source field(s), defined on corresponding domain(s), while another application

(receiver) requires or accepts the source field. The source field is typically defined

on discretization provided by provider, which is, in general, different from receiver’s

domain (the only requirement is that the domains should occupy the same space). The

source field has to be mapped into receiver’s discretization in order to obtain vertex

or integration point values. The application to different problems requires the use of

problem specific mapping algorithms, respecting physically or numerically based re-

quirements. The generic mapping operator is represented by an abstract class Trans-

ferOperator. Its role is to hide all implementation details under common interface,

consisting of map method, which takes the source and target fields as parameters and

implements mapping from target to source field. Some operators may require to build

some intermediate representation, like a least-square approximation of the target field

and this is naturally encapsulated in a derived classes implementing particular algo-

rithms. Also note, that since the FieldView is derived from Field class, the FieldView
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can be passed as parameter to any method expecting Field class as parameter as well

(polymorphism), extending the use of the same mapping operator for more general

cases.

4 Distributed environments

In a case of parallel and distributed applications, an additional level of complexity

has to be addressed. The individual applications can be physically distributed over

the network. The important role of the framework is to provide a transparent com-

munication mechanism between individual objects that will take care of the network

communication between the objects if necessary. When solving large-scale problems,

individual sub-problems are solved in parallel on shared or massively-parallel com-

puting resources. The data retrieval and processing should be performed in parallel

as well, without compromising the scalability. Particularly, the scalable implementa-

tion of field mapping is quite challenging. The key idea is to represent needed remote

data on target computing node locally, so that the mapping can be performed in par-

allel. Moreover, when source field view of remote data is locally cached, the field

values are transferred only once. This concept of parallel field transfer is illustrated in

Fig. 3, where simple interpolation field projection is used. On the computing nodes

containing target sub-domains, the field view of source data is set up in a such way

that its underlying sub-domain spatially covers the target sub-domain. This mapping

is represented by MappingContext class. Once the local representation of remote data

matching the target sub-domain is available on all target computing nodes, the map-

ping itself can be done in parallel, without any additional communication.

The setup of mapping context on target application computing nodes requires global

representation of remote data. This is needed because the target application should not

be aware of source application deployment. Therefore, application agents have to be

created by individual applications. They essentially hide the distributed character of

underlying mesh or field and manage the proper message dispatching to individual

computing nodes containing distributed data. The application agent implements the

application interface and its role is to represent the overall global access point for

application. Agent is aware of distributed application data structure, which allows to

execute data request operations efficiently by splitting them based on application parti-

tioning, routing the requests to processes owning the data, and assembling the results.

Despite many advantages, the introduction of application agent has also some draw-

backs. If all requests are passed through agent, it may become a bottleneck. However,

due to the distributed nature, multiple data requests can be processed in parallel, cre-

ating thread for each request, for example. Also, as discussed in previous example

of distributed mapping operation, the agent is needed only for setting up the mapping

contexts which determine mapping of distributed source data. After the mapping con-

texts are set up, the data transfers from source to target computing nodes can be done

in parallel, without the need of communication through agent - the mapping context

contains all data necessary to communicate directly with source computing nodes, as
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Figure 3: Concept of distributed mapping.

the data distribution is already known at this stage.

The abstract communication layer is built on Pyro [23] library, providing transpar-

ent distributed object system. It takes care of the network communication between the

objects once they are distributed over different machines on the network, hiding all

socket programming details, one just calls a method on a remote object as if it were

a local object - the use of remote objects is (almost) transparent. This is achieved by

the introduction of so called proxies. The proxy is a special kind of object that acts

as if it were the actual -remote- object. Proxies forward method calls to the remote

objects, and pass results back to the calling code. Pyro also provides Naming Service

which keeps record of the location of objects. The utilization of Pyro allows to fully

concentrate on application design, the distributed processing and data exchange is con-

veniently and transparently handled by Pyro. This is particularly convenient in initial

phases of project, where the focus is put on design and prototype implementation of

the framework.
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Figure 4: Specimen geometry, computational mesh, and its decomposition into 8 par-

titions.

5 Example

To demonstrate the use of the library and its performance, an example of parallel

field mapping between two distributed finite element applications is presented. The

scalar temperature field is transferred between two distributed FE applications, both

using unstructured 3D finite element meshes with different decompositions. The per-

formance of distributed field transfer algorithm is compared to performance of pure

serial mapping. The source and target FE meshes consist in total of 52825 nodes and

41848 linear brick elements. Originally the target and source meshes were identical.

In order to enforce element interpolation during the field mapping, the target mesh was

perturbed. Different decompositions of source and target domains have been consid-

ered and have been obtained by Metis [24]. The geometry of the specimen, associated

FE mesh, and its decomposition into 8 partitions are illustrated in Fig. 4.

The total wall clock time consumed as well as separate wall clock times consumed

by mirroring the remote data and local mapping were recorded by each sub-process

of target application. The mirroring time includes the set up of remote field views
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#create a time step

tstep=timestep.TimeStep(1.,1.)

# querry source sub-problem APIs

for rank in range(4):

api.append(Pyro4.Proxy("PYRONAME:Mupif.agent.example10."+str(rank)))

remoteField.append(Pyro4.core.Proxy(api[rank].giveFieldUri(1,tstep)))

# get my rank

myrank = int(argv[len(argv)-1])

#read target sub-mesh from file

mymesh = util.readOfemMesh(’jete4.np08.oofem.in.’+str(myrank))

# create empty target field

myfield = field.Field(mymesh, field.FieldID.FID_Temperature,

field.FieldType.vertex_based,

field.FieldValueType.scalar)

# determine mesh bbox

mybbox=bbox.BBox(list(mymesh.giveVertex(0).coords),

list(mymesh.giveVertex(0).coords))

for v in mymesh.vertices():

mybbox.merge(v.coords)

print "Mymesh ", mybbox

#obtain local field view (lfv) of remote data

init = True

start = time.clock()

for rank in range(4):

if init:

lfv = api[rank].giveBBoxFieldView(mybbox, 1, tstep)

lfv.update() #get remote field data

init=False

else:

#merge with remaining

_lfv = api[rank].giveBBoxFieldView(mybbox, 1, tstep)

_lfv.update() #update from remote master values

lfv.merge(_lfv)

print "Rank:", myrank, "Remote data miroring took ",

(time.clock() - start), "[seconds]"

# map locally mirrored remote field to target mesh

start = time.clock()

transferoperator.CellInterpolationTO().map(lfv, myfield)

elapsed = (time.clock() - start)

print "Rank:", myrank, "Local Mapping took ", elapsed, "[seconds]"

Table 1: Listing of target process Mupif script illustrating distributed field mapping.
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NSS NTS TS1[s] TS2[s] TS3[s] TS4[s] TT[s] note

1 1 -/327 340 serial

1 1 5.7/328 348 distributed

2 2 8.6/163.4 6.7/189.4 206 distributed

2 4 7.8/105.6 5.9/87.8 5.2/97.9 4.6/106.8 126 distributed

4 2 9.4/164.4 7.1/189.8 209 distributed

4 4 6.8/89.3 7.0/100.9 4.9/100.2 4.8/107.4 123 distributed

Table 2: Wall clock times consumed by field mapping for different configurations

(NSS is number of source sub-domains, NTS is number of target sub-domains, TS

contains times for particular target sub-domain (mirroring/local mapping), and TT is

the overall time spent by field transfer).

for individual source sub-domains, their mutual merging, and communication due to

remote data transfer. The time for local mapping measures the field transfer between

two local fields. The measurements were done on multicore workstation with 8 CPU

cores running Linux operating system and the obtained results are summarized in

Table 2.

From the presented results, several conclusions can be made. Firstly, by comparing

the results in the first two lines, which compare times for serial mapping of the whole

mesh (when source and target fields are managed by the single process) to the whole

mesh mapping, when target and source fields are managed by different processes.

The difference allows to assess the cost for inter-process communication, the cost of

setting up remote data field views and the Pyro library overhead. In total, this overhead

is approx. 6 seconds, which is small, compared to overall computational time. When

source and target applications will be spatially distributed, the communication cost

will be higher, as relatively slower network communication has to be used instead of

inter-process communication on shared memory computer. Another interesting point

is scalability which could be evaluated by comparing results with the same number

of source sub-domains and different (increasing) number of target sub-domains (e.g.,

lines 2 and 3, or 4 and 5 in Table 2). It can be seen that the algorithm scales well,

for example, the speedup in the case with four source sub-domains and two and four

target ones is 1.7, while the ideal value is equal to 2. The difference is attributed to

increased amount of communication needed and the additional overall overhead of

distributed algorithm. On the other hand, the results can be improved by using smart

request scheduling strategy. At present, all processes running target application start

querying source application processes in the same sequential ordering. In this case,

single source process has to respond to multiple requests in the same time. A better

strategy would be to perturb the querying sequence on target processes in order to

obtain better balanced query processing. Such an approach definitely could improve

the overall scalability. The observed speedup is therefore mainly due to the local

mapping on target sub-domains from mirrored source data which is done in parallel

on each target process without further communication.

The presented timings also reveal relative inefficiency of plain Python for compu-
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tationally intensive tasks. In this case the whole algorithm, including spatial octree

localization, element interpolation, etc. has been implemented in Python. The time

consumed by mapping is quite high, as it exceeds the time needed to solve the individ-

ual problems by compiled C++ solver. Fortunately, this can be improved easily. Once

the prototype implementation in Python is developed, the individual subroutines and

classes can be re-implemented in C or C++ and a Python interface can be generated,

using the wrapping tools. In this way all advantages of scripting Python interface

are retained, while the numerical efficiency is significantly improved to the level of

compiled languages.

6 Conclusions

This paper presents the design and structure of multi-physics integration framework,

with an object-oriented architecture. This framework facilitates the implementation

of multi-physics simulations, built from independently developed components. The

designed class hierarchy allows to represent solution fields, dicretizations and compu-

tational cells using an abstract interface that naturally supports different discretization

techniques and allows the implementation of numerically- and physically-aware algo-

rithms independent of underlying discretization. The interaction between framework

and individual applications is relying on abstract application interface, that needs to be

implemented for individual applications. Such an approach allows to perform trans-

parent data exchange and steering of individual applications. Paper also addresses and

illustrates important issues related to parallel and distributed computing platforms.

The library is integrated into interactive scripting Python environment and is available

as open source project, distributed under a GNU Public license.
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