
1

Abstract

High performance computing (HPC) has seen a long history of progress over the last
six decades. The prospects for an increase in performance over the coming decade
are still very good. Systems with a performance in the range of Petaflops become
widely available and discussions have started about how to achieve an Exaflop. This
paper discusses the further development of high performance computing in the fu-
ture. It proposes a strategy that shifts the focus of attention from hardware to soft-
ware. With such a change of paradigm further progress in the field of simulation is
more likely than with many of the concepts presented for Exascale computing.

Keywords: high performance computing, hardware-software, exaflop computing

1 Introduction

High performance computing has seen a long history of progress over the last six
decades. For a long time Moore’s assumption about the doubling of speed every 18
months [1] turned out to be right. When the increase in clock frequency started to
level out, parallelism became the driving factor. Parallelism came so far in two
waves. The first one started in the late 80s and by the early 90s created a number of
interesting concepts. However, most of the advanced concepts with sometimes very
large numbers of processors failed, and a number of companies disappeared from the
high performance computing arena pretty fast.

The result of this first wave of parallelism was a number of systems that typically
provided a moderate number of processors in a single system. For a while the largest
systems were hovering around 1000 and up to 10000 processors or cores. The fastest
system in the world in 1993 - as presented by the TOP 500 list [2] - was based on
1024 processors. The fastest system in 2003 was based on 5120 processors. The in-
crease was a factor of about 5. We have to consider though that in 2003 the number

Paper 1

Future High Performance Computing Strategies

M.M. Resch
High Performance Computing Center Stuttgart (HLRS)
University of Stuttgart, Germany

©Civil-Comp Press, 2012
Proceedings of the Eighth International Conference
on Engineering Computational Technology,
B.H.V. Topping, (Editor),
Civil-Comp Press, Stirlingshire, Scotland

2

one system – the Earth Simulator - was using special fast vector processors. But
even if we look at the top 10 systems of the list, we only find an increase in the level
of parallelism of about 10. The parallelism of this kind was not easy to master but
message passing was a good approach, and software programmers could easily keep
track of their thousands of processes.

Since about 2003 we have seen a second phase of parallelism. This was partially
driven by the IBM Blue/Gene project [3] which is using a larger number of slower
processors. Over the last two to three years graphics processing units (GPUs) - with
their hundreds of cores on one card - have further enhanced the trend. The currently
valid TOP 500 list of November 2011 shows a system with more than 700.000 cores
at the top. This is a factor of 140 over the last 8 years. Looking at the top 10 systems
we see a factor of 10. This is comparable to the first phase but the pace is much
faster now that we look at a period of 8 years only. For the next 2 years we expect to
see about half a million up to a million cores as the average for the fastest 10 sys-
tems. So over the decade from 2003 to 2013 we expect to see a factor of 200 in par-
allelism for the top system and an average factor of between 100 and 200 for an av-
erage top 10 system. From a programmers point of view things are getting out of
control.

In this paper we first look at the hardware available. We then investigate trends and
possible pathways for a further increase in performance. After that we look at soft-
ware approaches and provide hints of how to handle the huge amount of processes
and threads. We finish with some conclusions.

2 Hardware Development

2.1 Current status

The current hardware landscape is dominated by a small number of components that
are used by different architectures. With a few exceptions these standard compo-
nents are integrated to form a large scale system. Speed is guaranteed by maximiz-
ing the number of available components. This helps to keep costs under control –
since standard components are cheaper than specialized hardware - and provides the
application programmer with a familiar hardware and software environment. In the
following we look at the various components and try to estimate what might be seen
in the future.

2.2 Looking back first

Before we do that, we have a look at some historical developments because this
might give us an insight into what we can expect to come next. High performance
computing grew out of the primeval soup of computing. Historical accounts [4]
claim that Seymour Cray at a certain point in time decided he wanted to build the
fastest systems in the world, rather than economically interesting ones. Technically

3

Seymour Cray was following some basic principles which we still have to consider
today. For example the round shape of his first systems was owed to an attempt to
reduce distances. The further success of his first company proofed that speed and
economic success were possible at the same time. His failure with follow-on pro-
jects showed that things did change after a while. As long as the computer was a
special purpose instrument for a limited number of users high performance comput-
ing was based on special purpose systems with special prices.

The advent of the personal computer started to change things. The computer became
a ubiquitous instrument. Budgets for computer hardware were gradually moving
from special purpose systems to general purpose hardware. Already in 1990 Eugene
Brooks coined the word “Killermicros” [5], describing the end of what was consid-
ered to be “dinosaur” systems, and their replacement by microprocessor based sys-
tems. It did not take too long until Brooks was proven right. The number of systems
using specialized processor technology started to dwindle away and by the year
2000 only small “game reserves” were left. By the year 2009 such specialized proc-
essors were virtually extinct when NEC announced its withdrawal from the Japanese
Next Generation Supercomputing Project. However, recent announcements of NEC
suggest that we will see another round of specialized processors in the future.

It is interesting to see that the killermicros did not only make an end to specialized
processors in high performance computing. They also started to cannibalize each
other. Over a period of about 10 years a number of processor architectures started to
disappear from the TOP 500 list. While in the year 2000 the TOP 500 showed 5 dif-
ferent architectures with a substantial share of systems, that same list of the year
2011 shows that 90% of the systems are based on the x86-architecture.

The trend in microprocessor architectures was accompanied by a trend in system
architectures. In 1994 Donald Becker and Thomas Sterling started what they called
the “Beowulf Project” [6]. As a result of this project - that was building an high per-
formance computing cluster from standard components – clusters became extremely
popular in high performance computing. In the year 2000 expectations were high
that future high performance computing systems would all be clusters based on
“components off the shelf” (COTS). To some extent this has become true. About
80% of the systems listed in the TOP 500 list in November 2011 actually are clus-
ters.

The situation as described already shows that a number of trends shape the land-
scape of high performance computing. After this short historical review we now
have a look at the current situation and try to estimate the future developments in
hardware.

2.2.1 Processors

The basis for the top systems in high performance computing is currently many-core
processors. The number one system in 2011 – the Japanese K-Computer - relies on

4

the Fujitsu SPARC64 VIIIfx, a many-core processor with 8 cores [7]. More than
88.000 of these processors are bundled. Other large scale systems are based on the
AMD Opteron 6200 processor with 16 cores. In both cases the clock frequency is
comparably low. It is 2 GHz for the SPARC processor and 2.3 GHz for the AMD
processor.

Another standard building block used in very large scale systems are general pur-
pose graphics processing (GPGPU) units. Based on NVIDIA 2050 cards a high level
of peak performance as well as of Linpack performance is made possible. The
NVIDIA 2050 comes with 448 cores which again increases the number of cores for
the user.

The background of this increase in number of cores is clear. The International Tech-
nology Roadmap for Semiconductors [8] indicates that what was suggested by G.E.
Moore more than 50 years ago is still valid. The feature size is shrinking and it will
keep doing so for a number of years to come. While we cannot increase the clock
frequency anymore – basically because of the high leakage that comes with high
clock frequencies – we still can substantially increase the number of transistors on a
single chip. As a consequence, we are increasing the number of cores on a chip in-
stead of shrinking the chip and increasing the frequency.

The SPARC VIIIfx and the NVIDIA 2050 find themselves on two ends of a spec-
trum defined in terms of complexity of cores and number of cores. The SPARC VII-
Ifx processor comes with a rather complex core design. Each of the cores could be
described as “fat and fast”. The typical graphic cards like the NVIDIA 2050 come
with a very large number of cores. These cores can be described as “slim and slow”.

Finally, we should mention a special purpose system from IBM. The IBM BlueGene
is an architecture that is based on the IBM Power PC A2 processor. It comes with a
relatively low clock frequency of 1.6 GHz and has 18 cores of which 16 are used for
computing. The processor’s architecture is interesting in that it provides one extra
core for running an operating system and one extra core as a spare core in case one
of the 16 computing cores fails. These two strategies – operating system offloading
and hardware support for fault tolerance - are increasingly becoming important. Un-
fortunately the Power PC A2 is only available in the Blue Gene system for high per-
formance computing. Its market share will hence remain relatively small. It remains
to be seen how this architecture will further evolve. Technically the processor can be
considered to be closer to the “fat and fast” solution than to the “slim and slow” so-
lution.

2.2.2 Networks

In the field of internal communication networks we have seen a variety of solutions
in the past [10]. For a while several solutions were competing in the field of cluster
computing. With the advent of Infiniband [11] the situation has changed. The new
technology has practically replaced all other special solutions in the cluster market.

5

Of the 50 top systems in the TOP 500 23 are clusters based on Infiniband. The inter-
esting finding is that 26 of the TOP 50 system are using some kind of proprietary
network. Only one system is still based on Gigabit Ethernet (ranked number 42 in
November 2011).

When we turn the pages of the TOP 500 list we find that starting around a ranking of
150 the number of Gigabit Ethernet installations substantially increases. This indi-
cates that for high end systems Infiniband is a must. This is also supported when
looking at the level of sustained Linpack performance in the list. The typical Gigabit
Ethernet systems achieve about 50 to 60 % of peak performance for the Linpack
benchmark. For an Infiniband system this ratio is typically in the range between 45
to 85 %. The big variation indicates that Infiniband is used to build a variety of net-
work topologies.

2.2.3 Architectures

Looking at architectures we find that clusters dominate the TOP 500 list. About 80%
of the fastest systems in the world are in that group. The rest of about 20% is based
on an MPP architecture approach. Even though clusters are the biggest group we
look at the MPP architectures. They seem to be outdated but keep a constant share of
about 20% over the last 8 years, while other types of architectures have disappeared.
What is more interesting: in terms of performance MPPs have a much larger share
that is in the range of 40%. This is because MPPs can typically be found in the upper
part of the TOP 500. So, when talking about real high performance computers we
find that MPP and clusters are two competing technologies at equal footing.

One of the reasons for a renaissance of the MPPs is the IBM Blue Gene architecture.
Originally the concept was based on a relatively light-weight processor. The new
Blue Gene/Q has a relatively strong processor but comes with a lower clock fre-
quency than comparable systems. The network is proprietary and provides a 5D-
Torus.

In general, one of the main features of MPPs systems seems to be the better network
connectivity. The basic performance numbers (latency and bandwidth) for MPI are
typically comparable to what Infiniband can offer. However, the better network con-
nectivity seems to increase the level of sustained performance. Analysing the fastest
50 systems in the world, we see that proprietary interconnects on the average
achieve 78% of sustained performance for the Linpack benchmark. Infiniband based
systems achieve about 74%. This is not a big difference.

A further investigation of the list shows that low sustained performance is caused by
the usage of graphics cards. Such cards provide a high level of peak performance but
typically do not work well in terms of sustained Linpack performance. The average
sustained Linpack performance of the top 50 systems is 76%. The average of the 6
systems that make use of NVIDIA cards is 51% only. This is a clear indication that
such systems do not show satisfactory sustained performance for the classical high
performance computing applications.

6

What is further interesting is the evaluation of network architectures when we elimi-
nate the NVIDIA results. Without these systems both Infiniband based systems and
proprietary systems show an average of 80% of Linpack performance. The maxi-
mum for proprietary networks is 93%, for Infiniband it is 89%. The minimum for
proprietary networks is 72%, and for Infiniband it is 59%. However, the relatively
low minimum for Infiniband is the exception to the rule.

2.3 Potential paths forward

The last twenty years have shown that changes in high performance computing hap-
pen all the time and that predictions are difficult to make. However, there are a
number of findings.

The number of cores in a high performance computer will further increase. There is
currently no way of avoiding a situation in which millions of cores form the com-
pute backbone of a high performance computer system. We may see solutions where
the large number of cores is hidden from the user. However, this is most likely going
to happen based on some kind of software solution. Most likely we are going to see
compilers that support a high level of parallelism in a single node – whatever the
term “node” is going to mean in the coming years.

Given the actual lack of advantage for proprietary networks one has to expect that
Infiniband – or a follow-on technology – is going to gain more ground also in the
top 50 list. Economic considerations might lead to an end of proprietary network
development in much the same way that they have caused a substantial reduction in
processor architectures available for high performance computing.

3 Software Strategies

Given the rapid increase in complexity, discussions about software development
have spread across the world. One such activity is the International Exascale Soft-
ware Project (IESP) [12] that brings together researchers from the US, Europa and
Asia to discuss not only technical questions but also matters of funding with respect
to software for Exascale software. The main issues discussed concerning software
refer to:

• Co-design as a way to overcome the gap between hardware and software de-
velopment

• Programming models and languages as a way to bridge the gap between hard-
ware on the one hand and the software developer on the other hand

• Models to integrate hybrid architectures that use a mix of CPUs and GPUS or
even accelerators.

7

In the following we discuss some of these issues and try to highlight the potential
benefit of new concepts and the direction into which we are headed in Exascale
computing software.

3.1 Co-Design

In the discussions about the development of Exascale systems co-design plays an
important role. By developing software and hardware at the same time one expects
to overcome the asynchronies of the two technical development paths. Theoretically
this is a reasonable approach. However, the asynchronies remain. The basic fact is
that changes in hardware come in steps of 2-4 years. This is about the time horizon
for the renewal of a system and an upgrade of existing hardware technology. We are
still living in the age of rapidly changing technology when it comes to computers.

Software changes happen at a different speed. A short investigation of system soft-
ware and application software shows that both types of software follow very similar
patterns. First, there is an idea or a basic algorithm. In a second step there is some
prototype implementation. Over a time of 3-5 years the software starts to mature. A
renewal cycle for basic software typically lasts for about 20 years. Looking at the
history of operating systems one might assume even longer cycles. If we take UNIX
and Linux together as being based on very similar fundamental ideas, one would say
that the life span is in the range of 20-40 years. Similar time frames can be found for
application software. Basic concepts get implemented in prototype software. Over
time these packages mature and become available to a wider user community. Over-
all the process of maturing a software approach takes at least about twice as much
time as the change in hardware architecture and potentially even longer.

It remains to be seen whether a co-design approach can speed up the software devel-
opment process. It is certainly going to be beneficial if software developers are very
early on involved in the hardware development process. On the other hand, operat-
ing system development at large hardware providers for a long time was done in-
house such that an internal co-design was already taking place at high performance
computing vendors. Nothing indicates that such an in-house co-design was able to
overcome the gap between fast hardware development and slow software develop-
ment.

3.2 Programming Models

For a long time parallel programming languages were considered to offer a solution
to the problem of parallelization. With the advent of MPI and OpenMP these parallel
programming languages started to lose ground. OpenMP quickly became the method
of choice to program shared memory parallel systems. Given its simple constructs it
became quite popular. However, with the increasing number of processors large
scale systems turned into distributed memory systems.

8

In a sense the hardware architectures outgrew shared memory. The method of choice
for such distributed memory systems was – and still is – MPI. The explicit exchange
of messages is especially attractive for users that still fully understand the underly-
ing algorithms and concepts of their parallel programs. However, increasingly the
complexity of MPI implementations starts to limit users. In some cases large scale
systems are unable to provide enough buffer space in order for MPI to effectively
use thousands of processors.

One method of overcoming the problem of very large numbers of processes is to
make use of the underlying architectural concepts. Most architectures are based on
shared memory nodes. A typical system today might have several thousands of such
nodes. Each of the nodes may have up to 32 cores. To avoid a very large number of
MPI processes one may use a hybrid approach. For the 32 cores of each shared
memory node a single MPI process is used. The parallelism of shared memory is
exploited by using OpenMP directives. MPI communication is only used between
the nodes. By using such a hybrid method the number of MPI processes can be kept
relatively low even when a large number of cores are used. In the future the number
of cores in a node may substantially increase and go up to thousands. It remains to
be seen whether a hybrid approach can also handle such extremely fat nodes.

A new approach is the usage of Partitioned Global Address Space (PGAS) lan-
guages. Languages like co-array Fortran and UPC propose to hide the actual com-
munication from the user and hence make programming much easier. By only ex-
tending existing languages like Fortran and C there might be a chance that these lan-
guages are adapted rather fast and that programming constructs become part of the
underlying standard language. However, so far the take up is rather slow.

3.3 Compilers

When considering hybrid architectures we already saw that a combination of
OpenMP and MPI might be a good solution for the programming challenge. How-
ever, handling two programming models in a single code is difficult. An option to
avoid such an approach is a parallelizing compiler. The concept is well known and
was applied very successfully in the Hitachi SR8000 system back in 2000. The
compiler automatically parallelizes over a given number of cores that share their
memory. MPI communication is done by one core only. The compiler gives full
support for such a model.

The advantage of such an approach is that MPI codes can easily be reused. Further-
more, programmers do not have to mix OpenMP and MPI. Programming remains
relatively easy. The potential disadvantage is that auto-parallelizing compilers may
not be able to find an optimum solution for the parallelization problem for one
shared-memory node. Practical experience for shared-memory parallelization using
OpenMP showed that automatic parallelization is done well for up to 8 or 16
threads. Beyond that number it may be better to use explicit MPI programming –
even on shared memory machines.

9

With modern processors we have to expect shared memory nodes with core numbers
between 16 and 64 and with GPGPUs it may well be thousands of cores. So we may
lose performance when using automatic parallelization through compilers. On the
other hand, very large MPI codes – with one process per core instead of one process
per node – may become increasingly inefficient when the number of cores used in-
creases.

3.4 Algorithms

A prerequisite for sustained performance on large scale parallel systems is the suit-
ability of algorithms for the underlying architecture. Over the last decades of high
performance computing algorithms were based on the von-Neumann-architecture
and only a few new concepts were developed that specifically tackle parallel archi-
tectures. With the number of cores growing to 100.000 and more this situation will
have to change.

So, the ability to exploit a high level of parallelism depends highly on the underlying
mathematical and computational algorithms. In [13] G.R. Liu describes desired fea-
tures for algorithms for Exascale computing. He condenses his findings to four con-
cepts that need to be considered.

• Extremely high parallelism
• Minimal data communication
• Locality
• Simplicity

3.4.1 Extremely high parallelism

Extremely high parallelism is obviously necessary. An application needs to be able
to make use of a large number of cores. For many types of applications this should
not be a problem. Typical finite element or finite volume codes use tens of millions
or even billions of elements. For a system with 100.000 cores this implies that each
core would work on several hundreds or even thousands of elements. The challenge
is going to find a reasonable way to achieve load balancing of ever more complex
meshes. If such a load balancing can be achieved there should be enough computa-
tional load for each core. Similar calculations can be done for particle based codes.
As long as the number of particles is large enough very high levels of parallelism
can be achieved. One consequence of the need for extremely well balanced loads of
work is that mesh based methods will have to return back to simple meshes. Un-
structured or even adaptive methods may turn out to be mathematically interesting
but practically unfeasible for high performance computing.

A general finding would hence be that as long as we increase the size of the problem
together with the number of cores, we may expect reasonable computational per-
formance. The benefit of faster systems would be in being able to solve larger prob-

10

lems. On the other hand we have to see that we will not be able to speed up the solu-
tion of smaller problems.

3.4.2 Minimal data communication

Data communication is always costly in parallel systems. Driving the recommenda-
tion to the extreme one would therefore request: do not communicate.

There are two reasons why we want to minimize data communication. First, it is
time consuming and hence reduces the sustained performance of an application.
Second, it consumes a lot of electrical power. Reduction of data communication
hence results in a substantial reduction of power consumption. Given that one of the
key problems of future systems will be electrical power, the reduction of data com-
munication is a key factor.

With respect to traditional algorithms two approaches could be followed. On the one
hand, algorithms could become more loosely coupled. The key questions then are
stability and convergence of the method. On the other hand, one could aim at replac-
ing communication by computation. By increasing the computational efforts we
could reduce the need for communication.

In any case, reducing data communication is a much tighter restriction from the
point of view of algorithms than massive parallelism.

3.4.3 Locality

Locality partially is a corollary of the second requirement (avoid communication).
But locality has two sides to it. On the one hand locality at the macro-level allows
reducing data communication between processes. On the other hand locality has also
to be seen at the micro-level. Data locality can help to keep data in cache and hence
avoid costly access to main memory. The consequence of this finding is that we
need to go back to traditional concepts of computing like vector computing. It is
hence not surprising that modern processor architectures increasingly come with
vector like hardware features.

On the other hand, this requirement helps us to understand that the basis for sus-
tained performance in a large scale system is the performance that we can achieve
on a single processor. Speedup does not have any meaning if the single processor
performance is low. Hence, the first step in optimizing any parallel program is the
optimization of the single processor performance.

3.4.4 Simplicity

Simplicity could be seen as a corollary of the first two requirements. The first bene-
fit of simplicity is ease of compilation. Achieving a substantial level of sustained
performance on the single processor will require for the compiler to better “under-

11

stand” the structure of the code. This requires the algorithms to be simple. On the
other hand simplicity typically results in a simple replication of parallel tasks. Using
such a simple replication allows to fulfil the first requirement of massive parallel-
ism.

4 Conclusion

The further increase in performance in computing is driven exclusively by the con-
cept of parallelism. Other concepts are not to be expected in the near future. From
the point of view of an application programmer the hardware to be exploited is a
typically very homogeneous set of hundreds of thousands or millions of cores.

The support for programming of such large scale systems is rather limited. Compil-
ers can mainly exploit single processors. Automatic parallelization is only possible
for a very limited number of processors. Concepts like OpenMP are limited in scope
and cannot be extended to very large scale systems. Tools for automatic paralleliza-
tion are also limited in scope.

Programming models and programing languages seem to provide the best approach
for the programming of large scale systems. MPI is well established as a model. It
requires improvement and potentially simplifications to be of practical use for a very
large number of processors or cores. Partitioned Global Address Space languages
(PGAS) show some potential to at least support parallel programming efforts. How-
ever, they are not yet fully integrated into the standards of Fortran and C. It seems to
be necessary to follow up on these developments and evaluate how far they can get
us in real world applications.

Algorithms and models are typically not well suited for very large scale systems. For
a number of traditional applications the outlook is not very positive. Especially in
the field of engineering traditional methods are challenged by the low speed of
communication on the one hand and the high level of parallelism on the other hand.
An increase in number of elements is not always a solution to the problem. Size of
problem is not in every case interesting for the end user. Increasingly we are con-
fronted with applications that are sufficiently fine discretized but would require a
higher sustained performance in order to get solutions within a reasonable time-
frame.

In summary the prospects for high performance computing simulations are mixed.
We can expect to see a further increase in performance. This will allow us to tackle
new research questions and improve existing concepts. In order to harness the full
potential of new hardware we need to rethink our algorithms. Both mathematical
methods and computational approaches will have to be changed to be successful in
the new era of high performance computing.

12

References

[1] G.E. Moore, Cramming more components onto integrated circuits, Electronics,

38(8), 114-117, 1965.
[2] TOP 500 List www.top500.org (10.3.2012)
[3] Blue/Gene
[4] Charles J. Murray, The Supermen – The Story of Seymour Cray and the Tech-

nical Wizards behind the Supercomputer, John Wiley & Sons, 1997
[5] http://www.websters-online-dictionary.org/definitions/KILLER+MICRO

(10.3.2012)
[6] T. Sterling, D. Savarese, B. Fryxell, K. Olson, D.J. Becker, Communication

Overhead for Space Science Applications on the Beowulf Parallel Worksta-
tion, Proceedings of High Performance Distributed Computing (HPDC-4),
1995

[7] Takumi Maruyama, Tsuyoshi Motokurumada, Kuniki Morita, Naozumi Aoki,
Past, Present, and Future of SPARC64 Processors, FUJITSU Sci. Tech. J.,
Vol. 47, No. 2, pp. 130 – 135 (April 2011)

[8] ITRS, International Technology Roadmap for Semiconductors 2011 Edition
http://www.itrs.net/Links/2011ITRS/Home2011.htm

[9] IBM Corporation, IBM System Blue Gene/Q, IBM Corporation, 2011
[10] M.M. Resch, "Trends in Architectures and Methods for High Performance

Computing Simulation", in B.H.V. Topping, P. Iványi, (Editors), "Parallel,
Distributed and Grid Computing for Engineering", Saxe-Coburg Publications,
Stirlingshire, UK, Chapter 3, pp 37-48, 2009. doi:10.4203/csets.21.3

[11] http://www.infinibandta.org/ (10.3.2012)
[12] www.exascale.org (10.3.2012)
[13] G. R. Liu, On Future Computational Methods for Exascale Computer, iacm

expressions, 30, 8 – 10, December 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

