
Abstract

Techniques in the family of weighted residual methods; the orthogonal collocation,

Galerkin, tau, and least-squares methods, are adopted to solve a non-linear and highly

coupled pellet problem. Based on a residual measure and problem matrix condition

numbers, the Galerkin and tau methods are favorable solution techniques for the pellet

equations. On the other hand, the orthogonal collocation is associated with less theo-

retical complexities and the simplest implementation. The accuracy of the orthogonal

collocation method is similar to the least-squares method but with smaller condition

numbers.

Keywords: pellet equations, weighted residual methods, orthogonal collocation, tau,

Galerkin, least-squares.

1 Introduction

Heterogeneous catalysis is of outermost significance in many fields of gas conver-

sion and processing in chemical industries. In this study, the orthogonal collocation,

Galerkin, tau and least-squares methods are adopted solving a complex pellet model in

the spectral framework. The evaluation of the techniques in the family of the weighted

residual methods is based on convergence plots, problem matrix condition number,

and implementation issues. The SMR process and the methanol synthesis are adopted

for this investigation because the two processes cover various aspects of a chemical

reaction, in particular, one of them is strongly diffusion limited, while the other is not.

During the last decade, the least-squares method has gained increasing interest in

the chemical engineering field and is considered as a good candidate for solving re-

actor modeling problems. The least-squares method has been adopted for popula-

tion balance problems, pseudo-homogeneous fixed bed reactor, and pellet problems
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[1, 2, 3, 4, 5, 6, 7, 8]. Because the least-squares method is associated with the most

complicated linear algebra theory and thus complicated implementation issues, it is

of interest to investigate the performance of the least-squares technique relative to the

more frequently used Galerkin, tau and orthogonal collocation methods solving the

important pellet equations.

2 Chemical reactions

The steam methane reforming (SMR) process and the methanol synthesis are two im-

portant processes considered by the Norwegian gas industry for utilization of natural

gas. In the present study the reaction kinetic model of the reforming and shift reactions

(I)–(III) by Froment et al. [9] is adopted.

CH4 + H2O = CO + 3 H2 ∆H298 = 206.2 kJ/mol (I)

CH4 + 2 H2O = CO2 + 4 H2 ∆H298 = 164.7 kJ/mol (II)

CO + H2O = CO2 + H2 ∆H298 = −41.5 kJ/mol (III)

The kinetics of the methanol synthesis presented by Graaf et al. [11, 10] is used in

this work and is based on the hydrogenation of CO2 and CO as provided by reactions

(IV) and (V), and the water–gas-shift reaction (III).

CO2 + 3 H2 = CH3OH + H2O ∆H298 = −49.6 kJ/mol (IV)

CO + 2 H2 = CH3OH ∆H298 = −90.8 kJ/mol (V)

3 Mathematical modeling of porous catalyst pellets

A spherical geometry is adopted for the pellet and possible structural changes within

the porous material are not considered. Moreover, symmetry is assumed in the sphere

which results in one independent spatial variable in the radial dimension.

3.1 Pellet model equations

The continuity equation on mass basis is given as:

1

r2

∂

∂r
(r2vsρ) = 0 (1)

Species balance for components i = 1, 2, ..., n− 1:

1

r2

∂

∂r
(r2 vs ρωi) = −

1

r2

∂

∂r
(r2 je

i ) + S̃i (2)

2



By manipulation with the continuity equation (1) the species balance (2) can be written

as:

vsρ
∂ωi

∂r
= −

1

r2

∂

∂r
(r2 je

i ) + S̃i (3)

Hence, the continuity is enforced in the species balances. The species balance for

component i = n is given by the summation formula:

n∑

i=1

ωi = 1 (4)

The multicomponent mass diffusion fluxes, je
i for components i = 1, 2, .., n − 1, are

described by the Maxwell–Stefan closure [12]:

je
i =

− ρωi

∂ ln(M)

∂r
− ρ

∂ωi

∂r
+M ωi

n∑
j=1
j 6=i

je
j

MjD
e
ij

M
n∑

j=1
j 6=i

ωj

MjD
e
ij

(5)

Moreover, the mass diffusion flux of Species i = n is obtained from the summation

relation:
n∑

i=1

je
i = 0 (6)

The heat balances are given as:

ρCpg
vs∂T

∂r
+

1

r2

∂

∂r
(r2Qe) = S (7)

where the heat flux is given by Fourier’s law:

Qe = −λe∂T

∂r
(8)

The Darcy’s law represents a relation between the pressure gradient and the viscous

flow velocity:

v = −
B

µ

∂p

∂r
with B =

d2
pore

32
(9)

where the interstitial and superficial velocities are related by:

vs = ǫv (10)

The ideal gas law is used to give the density of the gas mixture:

p =
ρRT

M
(11)

The mass and heat source terms are given by, respectively:

S̃i = (1 − ǫ)Miρpri (12)

S = (1 − ǫ)ρp

∑
(−∆Hrk

)rk (13)
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3.2 Boundary conditions

The Dirichlet boundary conditions specified at the pellet surface are presented by:

ωi = ωi,b (14)

T = Tb (15)

p = pb (16)

At the symmetry point of the pellet, fluxes and velocities are assumed zero:

v = 0 (17)

je
i = 0 (18)

Qe = 0 (19)

4 Weighted residual methods

Given a one-dimensional problem in the following abstract formulation:

Lf(x) = g(x) in Ω (20)

Bf(x) = fΓ(x) on Γ (21)

where f(x) is the unknown function, L is a linear operator, and B denotes the bound-

ary condition operator. The problem is defined in the domain Ω and the boundary

conditions is applied on Γ. Moreover, the functions g and fΓ are given.

Spectral methods are based on using a representation of the solution f(x) ∈ X (Ω)
throughout the domain Ω via a truncated series expansion:

f(x) ≈ fP (x) =
P∑

j=0

αjϕj(x) (22)

where ϕj(x) is the basis or trial function which span the subspace X s(Ω) ⊂ X (Ω).

Nodal basis functions are commonly adopted for implementation of spectral meth-

ods due to the resulting simplicity of the method. The nodal basis functions are gen-

erally defined based upon the Lagrange polynomials which are associated with a set

of nodal points. The Lagrange polynomial can be written in product form as:

ℓj(x) =
P∏

i=0,i6=j

x− xi

xj − xi

(23)

The nodal solution series expansion in terms of Lagrange polynomials is thus given

as:

f(x) ≈ fP (x) =
P∑

j=0

fjℓj(x) (24)
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Hence, in the nodal basis approximation the basis coefficients are the solution function

value at the nodal points, i.e., αj = fj . When the truncated series expansion (24) is

substituted into the problem defined by equations (20) and (21), a residual will exists.

A number of techniques are developed within the weighted residual framework to

minimize the residual in some sense over the domain. In the sequent, the minimization

of the residual as performed in the orthogonal collocation, least-squares, Galerkin and

tau methods are outlined.

4.1 Least squares method

The least-squares formulation [1] is based on the minimization of a norm-equivalent

functional. This consists in finding the minimizer of the residual in a certain norm.

The norm-equivalent functional is given by:

J (f ; g, fΓ) ≡
1

2
‖Lf − g‖2

X (Ω) +
1

2
‖Bf − fΓ‖

2
X (Ω)

=
1

2
‖RΩ(f)‖2

X (Ω) +
1

2
‖RΓ(f)‖2

X (Ω)

(25)

where the norms are defined like:

‖ • ‖2
X (Ω) =< •, • >X (Ω)=

∫

Ω

• • dΩ (26)

‖ • ‖2
X (Γ) =< •, • >X (Γ)=

∫

Γ

• • dΓ (27)

and the residuals are given as:

RΩ(f) = Lf − g in Ω (28)

RΓ(f) = Bf − fΓ on Γ (29)

Based on variational analysis, the minimization statement is equivalent to: Find f ∈
X (Ω) such that

lim
ǫ→0

dJ (f + ǫv; g, fΓ)

dǫ
= 0 ∀v ∈ X (Ω) (30)

It follows that it is possible to write the necessary condition as: Find f ⊂ X (Ω) such

that: 〈
Lf,Lv

〉
X (Ω)

+
〈
Bf,Bv

〉
X (Γ)

=
〈
g,Lv

〉
X (Ω)

+
〈
fΓ,Bv

〉
X (Γ)

(31)

Inserting approximation (24) and choosing systematically

v = ℓj=0(x), ℓj=1(x), · · · , ℓj=P (x) (32)

the following algebraic system is achieved:

Af = F (33)
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where the matrix A ∈ R
(P+1)×(P+1) and vectors F, f ∈ R

(P+1)×1 are defined as:

[
A

]
ij

=
〈
Lℓj(x),Lℓi(x)

〉
X (Ω)

+
〈
Bℓj(x),Bℓi(x)

〉
X (Γ)

(34)

[
F

]
i
=

〈
g,Lℓi(x)

〉
X (Ω)

+
〈
fΓ,Bℓi(x)

〉
X (Γ)

(35)

[
f
]
i
= fi = f(xi) (36)

The inner products (34) and (35) are approximated by a quadrature rule:

[
A

]
ij

=
P∑

iq=0

WiqLℓj(xiq)LℓI(xiq) +
P∑

iq=0

WiqBℓj(xiq)Bℓi(xiq) (37)

[
F

]
i
=

P∑

iq=0

Wiqg(xiq)Lℓi(xiq) +
P∑

iq=0

WiqfΓ(xiq)Bℓi(xiq) (38)

4.2 Galerkin and tau methods

There are two conceptually different options available for the formulation of the spec-

tral solution methods, these are: (i) the variational methods and (ii) the weighted

residual methods. In the sequent, the Galerkin, tau and orthogonal collocation meth-

ods are outlined based on the minimization of weighted integrals or inner products.

Moreover, as opposite to the weak formulation in the least-squares method, the strong

formulation is applied in the Galerkin, tau and orthogonal collocation methods. In this

context, the weak formulation is associated with the residual minimization of both the

governing equations and the boundary conditions, whereas in the strong formulation

the residual of the governing equations is minimized in Ω and the boundary conditions

are enforced to be fulfilled on Γ. Hence, the residual minimization statement of the

Galerkin, tau and orthogonal collocation methods can be given by the following inner

product:

〈
ψi,R

P
Ω

〉
=

∫

Ω

RΩ(x; f0, f1, .., fj, .., fP )ψi(x) dΩ = 0 ∀ i = 0, 1, ..., P (39)

Each choice of the weighting function ψ correspond to a different residual estimate

within the computational domain. In the Galerkin method, the residual is constrained

to be orthogonal to each of the basis functions in the problem domain. Hence, the

weighting function is identical to the basis function, i.e., in this study, ψi(x) = ℓi(x)
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for i = 0, 1, ..., P . The inner product of the Ω-domain (39) may be given as:

〈
ℓi(x),RΩ(x; f0, f1, .., fj, .., fP )

〉
=

∫

Ω

RΩ(x; f0, f1, .., fj, .., fP )ℓi(x) dΩ

=
P∑

j=0

fj

∫

Ω

[
ℓi(x)Lℓj(x) − ℓi(x)g(x)

]
dΩ

=
P∑

j=0

fj

P∑

iq=0

[
ℓi(xiq)Lℓj(xiq) − ℓi(xiq)g(xiq)

]
Wiq

=0 ∀ i = 0, 1, ..., P

(40)

where the approximation (24), residual definition (28), and a quadrature rule are

adopted. In the Galerkin method, it is required that each of the basis function exactly

satisfy the boundary conditions, hence, some linear combinations of the polynomials

that fulfill the boundary conditions must be performed. Thus, deliberately structuring

the trial solution to satisfy the boundary conditions is a common practice in apply-

ing the Galerkin method. Given the boundary condition f(xmin) = fΓ, the algebraic

equation system (33) of the Galerkin method is given as:

[
A

]
ij

=
P∑

iq=0

ℓi(xiq)Lℓj(xiq)Wiq for i = 1, ..., P and j = 1, ..., P (41)

[
F

]
i
=

P∑

iq=0

ℓi(xiq)g(xiq)Wiq for i = 1, ..., P (42)

[
A

]
=




a1,1 a1,2 . . . a1,P

a2,1 a2,2 . . . a2,P

...
...

. . .
...

aP,1 aP,2 . . . aP,P


 (43)

[
f
]

=




f1

f2
...

fP


 (44)

[
F

]
=




F1 − a1,0fΓ

F2 − a2,0fΓ
...

FP − aP,0fΓ


 (45)

The tau method is similar to the Galerkin method. The essential difference between

the Galerkin and the tau methods is that in the tau method, the trial functions are not

required to satisfy the boundary conditions individually. Thus, the inner product of
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the tau method may also be describe according to (40) but the treatment of the bound-

ary conditions differ from the way boundary conditions are handled in the Galerkin

method. In the tau method, the boundary conditions are enforced as additional equa-

tions and in order to get a system of equations where the number of unknowns is

identical to the number of equations, the equation system has to be relaxed by n resid-

ual equations and replaced by the n boundary conditions. Hence, given the boundary

condition f(xmin) = fΓ, the algebraic equation system (33) of the tau method is given

as:

[
A

]
ij

=
P∑

iq=0

ℓi(xiq)Lℓj(xiq)Wiq for i = 1, ..., P and j = 0, 1, ..., P (46)

[
F

]
i
=

P∑

iq=0

ℓi(xiq)g(xiq)Wiq for i = 1, ..., P (47)

[
A

]
=




1 0 . . . 0
a1,0 a1,1 . . . a1,P

a2,0 a2,1 . . . a2,P

...
...

. . .
...

aP,0 aP,1 . . . aP,P




(48)

[
f
]

=




f0

f1
...

aP


 (49)

[
F

]
=




fΓ

F1
...

FP


 (50)

4.3 Orthogonal collocation method

In the orthogonal collocation method, the weighting function ψ in Eq. (39) is the

Dirac delta function, i.e., ψi(x) = δ(x− xi). The property of the Dirac delta function

implies the following equalities:

∫

Ω

δ(x− xi) dx = 1
∣∣
x=xi

(51)

∫

Ω

δ(x− xi) dx = 0
∣∣
x 6=xi

(52)
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Accordingly, at the location of the node points the residual is forced to zero such that

the differential equations are exactly satisfied at these points:
∫

Ω

R(x; fP,0, fP,1, ..., fP,P )δ(x− xi) dx = R(x; fP,0, fP,1, ..., fP,P )
∣∣
x=xi

= 0 (53)

The approximated solution of f(x) by the collocation method is thus represented by

finding a particular set of unknown coefficients {fj, j = 0, 1, ..., P} which satisfy

equations (53). The equation system (33) can be defined as:
[
A

]
ij

= Lℓj(xi) (54)

[
F

]
i
= g(xi) (55)

Moreover, the treatment of the boundary conditions in the orthogonal collocation

method can follow both the framework of the tau and Galerkin methods.

5 Results and discussion

A steady model is derived describing the temperature variations, viscous flow veloc-

ity, pressure, mass and heat fluxes, gas density, and species concentrations within the

voids and channels of a catalyst pellet. The pellet model is solved by the orthogonal

collocation, Galerkin, tau and least-squares methods, which are techniques in the fam-

ily of weighted residual methods. The reaction kinetics of both the SMR and methanol

synthesis are adopted for the present analysis of the numerical methods. Adopting the

reactor operating conditions as given in table 1, figures 1 (MeOH) and 2 (SMR) eluci-

date large concentration gradients within the SMR catalyst pellet compared to the less

intra-particle mass transfer limited methanol synthesis.

Because the pellet problem is non-linear, linearization by the Picard method is

adopted. To access the convergence of the model, the following convergence error

measure is defined:

‖Res‖ =

√∫

Ω

(Af − F)2 dΩ (56)

The convergence plot of the methanol synthesis is presented in figure 3 for poly-

nomial orders P = N + 1; N = 10, whereas the convergence plots of the SMR

process is presented in figure 4 for polynomial orders P = N + 1; N = 40. Both

the Galerkin and tau methods deviate minor in the residual measure with the number

of iterations. Moreover, considering the solution accuracy, the Galerkin and tau meth-

ods are favorable to the orthogonal collocation and least-squares method, in particular

for the larger gradient case, i.e. SMR process. The least-squares method obtains a

significantly larger condition number than the remaining methods.

As the residual in the orthogonal collocation method is minimized at the collocation

points, the implementation complexity and computational costs are in favor for this

weighted residual method. Moreover, due to the linear manipulation of the boundary

conditions the Galerkin appeared as the most time consuming method to implement.
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Description MeOH SMR

d (m) 0.0042 0.0173

dpore (nm) 40 40

ǫ (-) 0.5 0.528

τ (-) 4 3.5

pb (bar) 80 29

Tb (K) 500 800

ρp (kg/m3) 1775 2300

λe (W/m/K) 26 25

C̃pp (J/kg/K) 1000 1000

xb,i (-)

MeOH 0.0022 -

CO 0.058 6.3581e-005

CO2 0.022 0.0080931

H2 0.89 0.025567

H2O 0.0005 0.71335

CH4 0.0273 0.21218

N2 - 0.040755

Table 1: Specifications of the reactor operating conditions used in the simulations of

the methanol synthesis and SMR process.
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Figure 1: Simulation results: mass diffusion fluxes of the methanol synthesis.
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Figure 2: Simulation results: mass diffusion fluxes of the SMR process.
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Figure 3: Convergence plot and condition number κ. Methanol synthesis. N = 10.
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Figure 4: Convergence plot and condition number κ. SMR process. N = 40.

6 Conclusion

A non-linear pellet model has been solved for the SMR process and methanol synthe-

sis using the orthogonal collocation, Galerkin, tau and least-squares methods. Consid-

ering the accuracy of the numerical techniques, the Galerkin and tau methods are rec-

ommended above the orthogonal collocation and least-squares methods. Considering

implementation issues, the orthogonal collocation is associated with less theoretical

complexities, whereas the Galerkin is considered the most time consuming method to

implement.

The evaluation of the weighted residual methods should be further analysed on

other type of differential equations adopted in chemical reactor engineering.
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Notation list

Latin Letters

a Matrix coefficient element

A Coefficient matrix

B Boundary operator

B Permeability (m2)

Cp Heat capacity (J/kmol/K)

C̃p Heat capacity (J/kg/K)

Dij Binary diffusion coefficient (m2/s)

dpore Pore diameter (m)

d Diameter of pellet (m)

f Unknown function

F Source vector

g Source vector

∆H Heat of reaction (J/kmol)

j Mass diffusion flux (kg/m2/s)

J Functional

ℓ Lagrange polynomial

L Linear operator

M Molecular weight (kg/kmol)

MeOH Methanol

n Number of species in the gas mixture

N Number of collocation/quadrature points

p Pressure (Pa)

rp Radius of pellet (m)

r Radial dimension (m)

R Gas constant (J/kmol/K)

Res Residual

R Residual

S̃i Mass source term of species i (kg/m3/s)

S Heat source term (J/m3/s)

SMR Steam methane reforming

t Time (s)

T Temperature (K)

v Mass average velocity (m/s)

v Perturbation function; variational analysis

W Quadrature weight

Q Heat flux (J/m2/s)

x Coordinate (m)

X (Ω) Space

X s(Ω) Trial function space
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Greek Letters

α Basis coefficient

α Under-relaxation factor

λ Conductivity (W/m/K)

ρ Density (kg/m3)

ω Mass fraction (-)

µ Viscosity (kg/m/s)

Ω Computational domain

ǫ Void fraction (-)

τ Tortuosity (-)

Γ Boundary

ϕ Basis or trial function

ǫ Amplitude variable; variational analysis

δ Dirac delta function

ψ Weighting function

Subscript

b Bulk

g Gas

p Pellet

iq Quadrature point

i Species type

j Species type

j Index associated with polynomial order

i Index associated with the points

Γ Boundary

Superscript

e Effective

s Superficial

T Transpose

P Polynomial order
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