
Abstract

Galerkin-characteristics finite element method is a powerful numerical procedure for

convection-diffusion problems even in the convection-dominated case. It is, however,

reported that rough numerical integration for composite terms ruins the convergence

property. In this paper we discuss two ways to avoid numerical quadrature referring to

the recent results. One way is to use the lumping technique. A Galerkin-characteristics

finite element scheme of lumped mass type is considered. The other way is to use a fi-

nite difference method derived from a Galerkin-characteristics finite element scheme.

For these schemes the stability and convergence are discussed.

Keywords: convection-diffusion, characteristics, quadrature-free, finite element me-

thod, finite difference method, lumped mass, Péclet number, stability, convergence.

1 Introduction

Convection-diffusion problems appear and are solved in various fields of sciences and

technologies. The convection-diffusion equation is linear, but to solve it is not always

an easy task. When the Péclet number is high, that is, convection dominant cases, it is

well-known that the Galerkin finite element scheme, or equivalently, the centered finite

difference scheme, produces easily oscillation solutions. Hence, elaborate numerical

schemes with new ideas have been developed to perform stable computation. Among

them we focus on the method based on characteristics [1].

The procedure of the characteristic method is natural from the physical point of

view since it approximates particle movements. It is also attractive from the computa-

tional point of view since it leads to a symmetric system of linear equations. Schemes

derived from the characteristic method are recognized to be robust for high-Péclet

numbers. Galerkin-characteristics method also has the advantage of the finite ele-
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ment method, the geometrical flexibility and the extension to higher-order schemes.

A unique disadvantage of this method is in the computation of composite function

terms. Since the terms are not polynomials, some numerical quadrature is usually em-

ployed to compute them. It is, however, reported that much attention should be paid

to the numerical quadrature, because a rough numerical integration formula may yield

oscillating results caused by the non-smoothness of the composite function terms [2].

In this paper we discuss two ways to avoid numerical quadrature, referring to the

recent results. One way is to use the lumping technique. A Galerkin-characteristics

finite element scheme of lumped mass type [3] is considered. The other way is to use

a finite difference method[4] derived from a Galerkin-characteristics finite element

scheme[5]. Both schemes are free from numerical quadrature. For these schemes the

stability and convergence are discussed.

Throught the paper the symbol c with or without subscripts is used for a generic

positive constant independent of the discretization parameters, which may take a dif-

ferent value at each occurrence. We often write Cj(X) in place of Cj([0, T ];X) if

there is no confusion.

2 Basic idea of the method of characteristics

Let Ω be a bounded domain in R
2 and T be a positive constant. We consider an initial

boundary value problem; find φ : Ω × (0, T ) → R such that

∂φ

∂t
+ u · ∇φ− ν∆φ = f in Ω × (0, T ), (1a)

φ = 0 on ∂Ω × (0, T ), (1b)

φ(·, 0) = φ0 in Ω, (1c)

where ν is a positive constant, u ∈ C(Ω̄ × [0, T ]; R2) and f ∈ C(Ω̄ × [0, T ]; R)
are given functions. Physically u stands for the velocity of a fluid. We assume that it

vanishes on the boundary.

Hypothesis 1. The velocity u satisfies

u ∈ C
(

[0, T ];W 1,∞(Ω)
)

, u = 0 (x ∈ ∂Ω).

We denote the material derivative by

D

Dt
=

∂

∂t
+ u · ∇.

Let ψ be any function in V ≡ H1
0 (Ω). The weak formulation of (1) is

(

Dφ

Dt
(t), ψ

)

+ ν(∇φ(t),∇ψ) = (f(t), ψ), (t ∈ (0, T )), (2)
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where (·, ·) is the inner product in L2(Ω).

Let X: (0, T ) → R
2 be a solution of the ordinary differential equation

dX

dt
= u(X, t). (3)

Then, we can write

Dφ

Dt
(X(t), t) =

d

dt
φ(X(t), t). (4)

Let ∆t be a time increment. We set NT = ⌊T/∆t⌋ and tn = n∆t for n ∈ Z. Let

(x, tn) be a given point in Ω × (0, T ). We denote by X(t; tn, x) the solution of (3)

subject to an initial condition X(tn) = x. By the backward Euler approximation the

left-hand side of (4) is approximated by

Dφ

Dt
(x, tn) ≈ φ(x, tn) − φ(X(tn−1), tn−1)

∆t
,

which is the basic idea of the method of characteristics used in the numerical analysis

of flow problems. It approximates the material derivative term along the particle path

(X(t), t). Let Vh be a finite element space in V . We denote by φn
h ∈ Vh an approxi-

mation to φ(·, n∆t) ∈ V . The Galerkin-characteristics finite element scheme for (1)

is to find {φn
h; n = 1, · · · , NT} ⊂ Vh such that

(

φn
h − φn−1

h ◦Xn
1

∆t
, ψh

)

+ ν(∇φn
h,∇ψh) = (fn, ψh) (∀ψh ∈ Vh) (5)

subject to an initial condition φ0
h ∈ Vh, where

Xn
1 (x) = x− un(x)∆t

and ◦ means the composition of functions, (φn−1
h ◦ Xn

1 )(x) = φn−1
h (Xn

1 (x)). Since

Xn
1 (x) approximates X(tn−1; tn, x), the first term of the left-hand side of (5) is an

approximation of the first term of (2).

The Galerkin-characteristics finite element scheme has advantages as follows [1,

5]:

• geometrical flexibility since it is a finite element method;

• robustness for high Péclet number problems; it works even for pure convection

problems;

• unconditonal stability; there is no restriction on the choice of ∆t;

• symmetricity of the matrix; the resultant matrix to be solved at each time step is

symmetric and independent of the step number.
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The scheme (5) is of the first order in ∆t. The second order Galerkin-characteristics

scheme in ∆t of Crank-Nicolson type is given by [5] as
(

φn
h − φn−1

h ◦Xn
2

∆t
, ψh

)

+
ν

2

(

∇φn
h + ∇φn−1

h ◦Xn
1 ,∇ψh

)

+
ν∆t

2

{(

Jn∇φn−1
h ,∇ψh

)

+
(

∇(∇ · un) · ∇φn−1
h , ψh

)}

=
1

2
(fn + fn−1 ◦Xn

1 , ψh) (∀ψh ∈ Vh), (6)

where Jn is the Jacobi matrix defined by

Jn
ij =

∂un
i

∂xj

and Xn
2 is the approximation of X(tn−1; tn, x) obtained by the second order Runge-

Kutta method or the Heun method,

Xn
2 (x) = x− un−1/2

(

x− un(x)
∆t

2

)

∆t,

Xn
2 (x) = x−

(

un(x) + un−1(x− un(x)∆t)
)∆t

2
.

This scheme has also all the advantages mentioned above. For these schemes the con-

vergence of the finite element solution φh to the exact one φ is proved to be ofO(∆t+
hk) and O(∆t2 + hk), respectively, in a norm corresponding to L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)) when Pk finite element is employed [5].

In these schemes we have to compute the term such as
∫

K

φn−1
h ◦Xn

k whi dx (k = 1, 2),

where K is an element and whi is the base function associated with node Pi. Since

the composite function φn−1
h ◦ Xn

k is neither a polynomial nor smooth on K, some

numerical integration is often employed. However, it is reported in [6] that rough

numerical integration causes oscillation and that even the interruption of the compu-

tation is encountered by overflow in the worst case though the unconditional stability

is proved. That is, quadrature error ruins the stability property of the schemes. This

inconvenience is improved if we use the second order scheme (6) as shown in [2], but

much attention should be paid in the treatment of these terms.

We focus on schemes based on the method of characteristics and they are free of

numerical integration. One way of constructing such a scheme is the finite difference

method and the other one is the lumping.

3 A finite difference scheme of the first order in time

Assume that Ω is a rectangle, [0, L1] × [0, L2]. Let h be a lattice size, and we assume

that N1 = L1/h and N2 = L2/h be integers. We denote by xi,j the lattice point
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(ih, jh). We prepare sets of lattice points,

Ω̄h = {xi,j; i = 0, · · · , N1, j = 0, · · · , N2},
Ωh = {xi,j; i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1},
Γh = Ω̄h\Ωh.

Let φh be a lattice function defined on Ω̄h. We set φh i,j = φh(xi,j) for xi,j ∈ Ω̄h. We

define the bilinear interpolation operator Π
(1)
h into C(Ω̄) by

(Π
(1)
h φh)(x) =φh i,j wi,j(x) + φh i+1,j wi+1,j(x) + φh i+1,j+1wi+1,j+1(x)

+ φh i,j+1wi,j+1(x)
(

x ∈ [ih, ih+ h) × [jh, jh+ h)
)

,

where

i = ⌊x1

h
⌋, j = ⌊x2

h
⌋,

wi,j(x) =
(

i+ 1 − x1

h

) (

j + 1 − x2

h

)

, wi+1,j(x) =
(x1

h
− i

)(

j + 1 − x2

h

)

wi,j+1(x) =
(

i+ 1 − x1

h

) (x2

h
− j

)

, wi+1,j+1(x) =
(x1

h
− i

)(x2

h
− j

)

.

We denote by Vh a set of lattice functions defined by

Vh =
{

vh : Ω̄h → R; vh = 0 on Γh

}

.

A characteristics finite difference scheme for (1) is to find {φn
h; n = 1, · · ·NT} ⊂ Vh

such that

φn
h − (Π

(1)
h φn−1

h ) ◦Xn
1

∆t
− ν∆hφ

n
h = fn on Ωh (7)

subject to φ0
h = φ0 on Ω̄h, where ∆h is the discrete Laplace operator defined by

(∆hφh)(xi,j) =
1

h2
(φh i+1,j + φh i−1,j + φh i,j+1 + φh i,j−1 − 4φh i,j) .

Remark 1. In general, Xn
1 (xi,j) = xi,j − un(xi,j)∆t is not a lattice point. Therefore,

the interpolation operator Π
(1)
h is necessary in (7). The equation (7) can be written

equivalently as

(1 +
4ν∆t

h2
)φn

h i,j −
ν∆t

h2
φn

h i+1,j −
ν∆t

h2
φn

h i−1,j −
ν∆t

h2
φn

h i,j+1 −
ν∆t

h2
φn

h i,j−1

= wk,ℓ(yi,j)φ
n−1
h k,ℓ + wk+1,ℓ(yi,j)φ

n−1
h k+1,ℓ + wk+1,ℓ+1(yi,j)φ

n−1
h k+1,ℓ+1

+ wk,ℓ+1(yi,j)φ
n−1
h k,ℓ+1 + ∆t fn

i,j, (8)

where

yi,j = xi,j − un(xi,j)∆t, k = ⌊(yi,j)1

h
⌋, ℓ = ⌊(yi,j)2

h
⌋.
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Since (7) is a finite difference scheme, no quadrature is required. We show the

stability and convergence results. We use the following norms,

‖φh‖ℓ∞(ℓ∞) = max
0≤n≤NT

‖φn
h‖ℓ∞ , ‖φh‖ℓ1(ℓ∞) = ∆t

NT
∑

n=0

‖φn
h‖ℓ∞ ,

‖φn
h‖ℓ∞ = max{|φn

h(xi,j)|; xi,j ∈ Ω̄h}.
Hypothesis 2.

∆t <
1

‖u‖C(W 1,∞(Ω))

. (9)

Lemma 1. Under Hypotheses 1 and 2, scheme (7) is L∞-stable, i.e., it holds

‖φh‖ℓ∞(ℓ∞) ≤ ‖φ0
h‖ℓ∞ + ‖f‖ℓ1(ℓ∞). (10)

Proof. Condition (9) implies that Xn
1 (x) ∈ Ω̄ as shown in [5, Proposition 1] . In

general, it holds that for any y ∈ Ω̄

wk,ℓ(y), wk+1,ℓ(y), wk+1,ℓ+1(y), wk,ℓ+1(y) ≥ 0,

wk,ℓ(y) + wk+1,ℓ(y) + wk+1,ℓ+1(y) + wk,ℓ+1(y) = 1
(

k = ⌊y1

h
⌋, ℓ = ⌊y2

h
⌋
)

.

Hence we can derive the result from (8) by a maximum principle.

We introduce the function space

Zm
C = {φ ∈ Cj(Cm−j(Ω̄)); j = 0, · · · ,m, ‖φ‖Zm

C
< +∞},

‖φ‖Zm
C
≡ max{‖φ‖Cj(Cm−j(Ω̄)); j = 0, · · · ,m}.

Theorem 1. Assume hypotheses 1 and 2. Let φ and φh be the solution of (1) and (7),

respectively. If φ and u satisfy

φ ∈ Z2
C ∩ C0([0, T ];C3(Ω̄)), u ∈ Z1

C , (11)

then we have

‖φh − φ‖ℓ∞(ℓ∞) ≤ c(‖u‖Z1
C
)‖φ‖Z2

C
∩C(C3)(h+ ∆t).

Proof. Let en
h = φn

h − φn be the function defined on Ω̄h. Then eh = {en
h;n =

1, · · · , NT} satisfies (7) with the initial condition e0h = 0 and the right-hand side Rn

defined by

Rn ≡ Rn
1 +Rn

2 +Rn
3 +Rn

4 ,

Rn
1 ≡ Dφn

Dt
− φn − φn−1 ◦Xn−1

∆t
,

Rn
2 ≡ φn−1 ◦Xn

1 − φn−1 ◦Xn−1

∆t
,

Rn
3 ≡ Π(1)φn−1 ◦Xn

1 − φn−1 ◦Xn
1

∆t
,

Rn
4 ≡ ν∆hφ

n − ν∆φn.
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Let g(t) = φ(X(t; tn, x), t). Then, we have

|Rn
1 | = |dg

dt
(tn) − g(tn) − g(tn−1)

∆t
|

≤ 1

2
‖d

2g

dt
‖L∞(tn−1,tn)∆t ≤ c(‖u‖Z1

C
)‖φ‖Z2

C
∆t.

The second terms is evaluated as

|Rn
2 | = | 1

∆t
∇φn−1(Xn

1 −Xn−1)|
≤ c(‖u‖Z1

C
)‖φ‖C(C1)∆t.

Noting that

(Π(1) − I)φn−1 = 0 (∀xi,j ∈ Ωh),

we evaluate the third term as

|Rn
3 | = | 1

∆t
(Π(1) − I)φn−1 ◦Xn

1 |

= | 1

∆t
{(Π(1) − I)φn−1 ◦Xn

1 − (Π(1) − I)φn−1 ◦ I}|

=
1

∆t
|∇{(Π(1) − I)φn−1}| |Xn

1 − x|

≤ c(‖u‖C)|∇{(Π(1) − I)φn−1}|
≤ c(‖u‖C)‖φ‖C(C2)h.

The fourth term is evaluated as

|Rn
4 | ≤ cν‖φ‖C(C3)h.

Gathering these estimates, we obtain

|Rn| ≤ c(‖u‖Z1
C
)‖φ‖Z2

C
∩C(C3)(h+ ∆t),

which implies the result by virtue of Lemma 1.

4 A Galerkin-characteristics finite element scheme of

lumped mass type

The result of the previous section can be extended to a finite element method of lumped

mass type [3]. Lumped mass technique requires no quadrature.

Let Th ≡ {K} be a partition of Ω by triangles. Let Xh(⊂ H1(Ω)) be the P1-

finite element space, and Vh be Xh∩H1
0 (Ω). A Galerkin-characteristics finite element

scheme of lumped mass is to find {φn
h; n = 1, · · · , NT} ⊂ Vh such that

(

φ̄n
h − Īh(φ

n−1
h ◦Xn

1 )

∆t
, ψ̄h

)

+ ν(∇φn
h,∇ψh) =

(

Īhf
n, ψ̄h

)

, ∀ψh ∈ Vh (12)
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subject to the initial condition φ0
h = Ihφ

0. Here, Ih : C(Ω̄) → Xh is the interpolation

operator defined by

(Ihψ)(P ) = ψ(P ), (∀node P ∈ Ω̄),

¯ : Vh → L2(Ω) is the lumping operator defined by

ψ̄h(x) = ψh(P ), (x ∈ DP )

and DP is the barycentric domain [7] associated with node P shown in Fig. 1,

DP =
⋃

K

{DK
P ;P ∈ K ∈ Th}

DK
P =

2
⋂

j=1

{x;x ∈ K,λQ(j)(x) ≤ λP (x)},

where {P,Q(1), Q(2)} is the set of the vertices of K and {λP , λQ(1),λQ(2)} is the

system of the barycentric coordinates.

Figure 1: The barycentric domain DP associted with P .

Let N be the number of interior nodes, and whi, i = 1, · · · , N , be the base function

associated with node Pi ∈ Ω,

whi ∈ Vh, whi(Pj) = δij, i, j = 1, · · · , N.

Let A = {aij} be the stiffness matrix with

aij = (∇whj,∇whi), i, j = 1, · · · , N.

Hypothesis 3. aij ≤ 0 for i 6= j, i, j = 1, · · · , N .

Remark 2. A sufficient condition for Hypothesis 3 is that for any edge E it holds that

αE
1 + αE

2 ≤ π,

where αE
i , i = 1, 2, are two angles (of two elements sharing E) opposite to E [8]. A

little stronger but more familiar condition is every angle of all triangles is less than or

equal to π/2 [9].
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Let mi be

mi = measDPi
.

Setting ψh = whi in (12) and dividing the i-th equation bymi, we obtain an equivalent

equation to (12), for i = 1, · · · , N ,

1

∆t

(

φn
h(Pi) − (φn−1

h ◦Xn
1 )(Pi)

)

+ ν
1

mi

N
∑

j=1

aijφ
n
h(Pj) = fn(Pi). (13)

For a set of functions {φn}NT

n=0 ⊂ L∞(Ω) we define norms,

‖φ‖ℓ∞(L∞) = max
0≤n≤NT

‖φn‖L∞(Ω), ‖φ‖ℓ1(L∞) = ∆t

NT
∑

n=0

‖φn‖L∞(Ω). (14)

Lemma 2. Under Hypotheses 1, 2 and 3, scheme (12) is L∞-stable, i.e., it holds

||φh||ℓ∞(L∞) ≤ ||φ0
h||L∞ + ||Ihf ||ℓ1(L∞). (15)

The proof is similar to that of Theorem 1.

Theorem 2. Assume hypotheses 1, 2 and 3. Let φ and φh be the solution of (1) and

(12), respectively. If φ and u satisfy (11), then for any ǫ ∈ (0, 1) we have

||φh − Ihφ||ℓ∞(L∞) ≤ cǫ(‖u‖Z1
C
)‖φ‖Z2

C
∩C(C3)

(

h+ ∆t+
h2−ǫ

∆t

)

. (16)

By taking ∆t = O(h) we have

||φh − Ihφ||ℓ∞(L∞) ≤ cǫ(‖u‖Z1
C
)‖φ‖Z2

C
∩C(C3)h

1−ǫ. (17)

We omit the proof, which is found in [3].

Remark 3. The ǫ of the power in h is the consequence of the error estimate for the

Poisson equation by the P1 finite element [9]. It disappears for three dimensional

problems.

5 A characteristics finite difference scheme of second

order in time

We present a characteristics finite difference scheme of second order in time [4], which

corresponds to (6). Since it is a finite difference scheme, no quadrature is required.
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Here we consider again functions φh defined on the lattice set Ω̄h. A finite differ-

ence scheme corresponding to (6) is

φn
h −

(

Π
(1)
h φn−1

h

)

◦Xn
2

∆t
− ν

2

(

∆hφ
n
h + ∆̃

(n)
h φn−1

h

)

− ν∆t

2

{∂un
1

∂x1

∇h1∇h1 +
∂un

2

∂x2

∇h2∇h2 + (
∂un

1

∂x2

+
∂un

2

∂x1

)∇(2h)1∇(2h)2

}

φn−1
h

=
1

2
(fn + fn−1 ◦Xn

1 ) on Ωh, (18)

where

∆̃
(n)
h ≡ ∇h1∇̃(n)

h1 + ∇h2∇̃(n)
h2 ,

(∇hk vh)(x) ≡
1

h

{

vh(x+
h

2
ek) − vh(x−

h

2
ek)

}

,

∇̃(n)
hk ≡

{

Π
1
2
ek,(1)

h

(

∇hk ·
)}

◦Xn
1 ,

(∇(2h)k vh)(x) ≡
1

2h

{

vh(x+ hek) − vh(x− hek)
}

(k = 1, 2),

ek is the unit vector to xk direction, and Π
1
2
ek,(1)

h is the bilinear interpolation operators

using the values at xi,j ± 1
2
hek for i, j ∈ Z.

Remark 4. We suppose that Π
( 1
2
,0),(1)

h vh is defined in the whole Ω̄. For that purpose

we extend the values of vh by defining that

vh(x−1/2,j) ≡ 2vh(x1/2,j) − vh(x3/2,j),

vh(xN1+1/2,j) ≡ 2vh(xN1−1/2,j) − vh(xN1−3/2,j) (j = 0, · · · , N2).

Similar extension is done for functions operated by the bilinear interpolation Π
(0, 1

2
),(1)

h .

For this scheme we have the L2 stability and convergence result. We prepare the

following norms and seminorms. For a lattice function ψh defined on Ωh or a set of

the functions ψh = {ψn
h}NT

n=0,

‖ψh‖l2(Ωh) ≡
{

h2
∑

xi,j∈Ωh

ψh(xi,j)
2
}1/2

,

‖ψh‖ℓ∞(ℓ2) ≡ max
0≤n≤NT

‖ψn
h‖l2(Ωh), ‖ψh‖ℓ2(ℓ2) ≡

{

∆t

NT
∑

n=0

‖ψh‖2
l2(Ωh)

}1/2

,

|ψh|h1(Ωh) ≡ ‖∇hψh‖
l2(Ω

( 1
2 ,0)

h
)×l2(Ω

(0, 12 )

h
)
,

|ψh|l2(h1′) ≡
{

∆t

NT
∑

n=1

∥

∥

∥

∇hψ
n
h + ∇̃(n)

h ψn−1
h

2

∥

∥

∥

2

l2(Ω
( 1
2 ,0)

h
)×l2(Ω

(0, 12 )

h
)

}1/2

,
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where ℓ2(Ω
1
2
ek

h ), k = 1, 2, is a norm for functions ψh defined on the lattice Ω̄h ± 1
2
ek,

‖ψh‖
l2(Ω

1
2 ek
h

)
≡

[

h2
∑

{ψh(yi,j)
2; yi,j = xi,j +

1

2
ek ∈ Ω̄, xi,j ∈ Ωh}

]1/2

.

Lemma 3. Under Hypotheses 1 and 2, scheme (18) is L2-stable, i.e., it holds

‖φh‖l∞(l2) +
√
ν|φh|l2(h1′) ≤ c (‖φ0‖l2(Ωh) +

√
ν∆t|φ0|h1(Ωh) + ‖f‖l2(l2)).

Theorem 3. Assume hypotheses 1 and 2. Let φ and φh be the solution of (1) and (18),

respectively. If φ, u and f satisfy

φ ∈ Z3
C , u ∈ Z2

C , f ∈ Z2
C

then we have

‖φ− φh‖l∞(l2) +
√
ν|φ− φh|l2(h1′) ≤ c(‖u‖Z2

C
) (‖φ‖Z3

C
+ ‖f‖Z2

C
)(h+ ∆t2).

For the proofs of these results we refer to [4], where a scheme having a better

convergence order in space is also presented.

6 Conclusion

We have discussed two ways to avoid quadrature in treating characteristic methods for

convection diffusion problems from the recent results. One is to use finite difference

methods, which does not need quadrature in nature with the loss of geomtrical flexibil-

ity. On rectangle domains we have shown two characteristics finite difference schemes

of first and second orders in time increment. In the latter case discrete L2 norm is em-

ployed, which will be applicable to the Navier-Stokes equations. The other way is

to use the lumping technique for the Galerkin-characteristics finite element method.

It keeps the geometrical flexibility of the finite element method, but the convergence

order is of first order. To develop numerical schemes having both advantages of these

methods is the future work.
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