
Abstract

In this paper, a concurrent multiscale method for coupling the three dimensional con-

tinuum and molecular dynamics domain is presented. The coupling method is based

on the Bridging Domain method. To handle discontinuities in continuum domain, the

extended finite element method (XFEM) is used. The Lennard-Jones potential is used

to model the interactions in the atomistic domain and the Cauchy-Born method is used

to compute the material behaviour in the continuum domain. To show the productiv-

ity and applicability of the proposed method, two different three dimensional crack

examples were modeled. The results show that the method is capable of handling

dislocation nucleation and crack propagation in the three dimensional space.

Keywords: extended finite element method, molecular dynamics, bridging domain

method, multiscale methods.

1 Introduction

One of the main research topics in materials science and mechanics in the last decade

was to gain a fundamental understanding of material failure. Earlier approaches were

based mainly on the empirical observations. Material failure depends often on the

behaviour of the next lower level. Typical examples are shear bands in metallic ma-

terials, micro-cracks in quasi-brittle materials, dislocation and defects in the atomic

lattice, etc. In these cases, the response of the body depends on the accuracy of the

finer scale modeling.

There are different methods for modeling cracks and failure in materials both in

continuum and atomistic scales. Methods which can work on the resolution of the

lower scales are too expensive and hardly can be used in real engineering problems.

Therefore new methods to simulate material failure are urgently needed in engineer-
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ing. This was the motivation of a big class of numerical methods called multiscale

methods. In these methods, different length and time scales are correlated to keep

both accuracy and efficiency.

In the multiscale failure analysis of materials, different length and time scales are

involved. For example, the diameter of inclusions or imperfections (’micro-voids’) is

between 10−6 m to 10−3 m, whereas the size of the structure to be examined is in the

order of 100 m. Thus modeling with the resolution of the finer scale throughout the

model is not currently feasible due to available computational resources. The differ-

ence in the time scales in dynamic applications is sometimes even more drastic. It was

shown that the time scales at the atomic level is in the range of 10−15 seconds while

the time scale in the macro-scale level is in the order of 10−4 seconds. Therefore, the

coupling of models from different time and length scales results in some difficulties.

In the case of atomistic to continuum coupling, additional problems arise because

of different assumptions in both models. For example, in the molecular dynamics,

the speed of the atoms is proportional to the temperature while in continuum model,

the temperature is considered as a speed independent scalar field. Without suitable

coupling methods, unphysical effects such as heating or melting in the atomic system

can occurs.

To date, several concurrent approaches have been developed. Generally, two so-

called ’Interface’ coupling and ’Handshake’ coupling can be distinguished. The for-

mer approach is susceptible to artificial wave reflections on the boundary (however,

effective approaches to reduce artificially reflected waves have been developed re-

cently [1]). In ’Handshake’ couplings approaches, two areas from different scales are

gradually transformed into each other.

One of the most popular methods in coupling MD to continuum domains is the

quasi-continuum method of Tadmor et al. [2]. The coupling can be interpreted as

a seamless MD to continuum transition by means of a force-field potential to a con-

tinuum potential changing. However, the nodes in the atomic field should be at the

same position of the atoms which results in highly distorted FE meshes especially in

the ’coarsening’. Furthermore, the propagation of defects (in MD area) requires the

conversion of continuum domain to MD field.

The ’coupling of length scales’ (CLS) method of Abraham et al. [3, 4] and Broughton

et al. [5] links the atomic system with the continuum domain which is described by

finite elements. At the transition from atomic to the continuum field, atoms are placed

at the points of finite elements. By introducing a damping kernel matrix and special

boundary conditions, Weinan and Huang [6] eliminated the redundant degrees of free-

dom on the MD boundary. A chebyshev polynomial mapping function was developed

by Bayliss and Turkel [7] that can reduce artificial boundary effects.

The bridging scale method of Wagner and Liu [8] can eliminate reflection of unau-

thorized elastic waves on the atom/continuum transition area. In this coupling method,

the continuum domain is modeled using finite elements or meshfree discretization [9].

Likewise, in the bridge area the nodes should placed in the atom positions. The bridg-

ing method of Xia and Belytschko [10] is based on an L2 link, i.e. displacement
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compatibility between atomistic and continuum field would accomplished by means

of Lagrange multipliers in weak form. In this paper, the partition of unity enriched

methods and the bridging domain method (BDM) [11] are blended together for crack

modeling. Here, a weak coupling between the models in the two adjacent domains is

used [12, 13]. It was shown that the spurious wave reflection is minimum in this kind

of coupling method [12].

It should be noted that in the XFEM-BDM coupling method, the atomistic region

presents only around crack front but not along the whole length of the crack surface.

This part of crack is mainly simulated by XFEM in the countinuum domain. The hand-

shake domain allows the crack to be smoothly represented from the continuum domain

to atomistic domain. This advantage of XFEM-BDM coupling method over other con-

current multiscale methods such as the standard BDM or the quasi-continuum method

of Tadmor et al. [2], Shenoy et al. [14] and Miller and Tadmor [15], makes this method

more efficient and applicable for real physical problems. This affords the modeling

and simulation of relatively long cracks, by restricting the MD model to a small zone

around the crack front. Since the crack front is modeled by molecular dynamics, the

creation and propagation of dislocations are easy to capture by this method.

Another advantage of the current study over the previous studies for example by

Gracie and Belytschko [16] is that, this study implements a full three dimensional

version which can be extended to many potentials and continuum meshes. At the

many stages of the implementation, the generality of the computational and algorith-

mic methods were treated with care to make it usable for real physical conditions

and computational sizes beyond just simple academic examples. This is achieved by

coupling our in-house Extended Finite Element code to the LAMMPS molecular sim-

ulator [17] which enables usage of many great capabilities of LAMMPS. This three

dimensional method enables us to study many complex phenomena which is not even

observed in 2D simulations.

This paper is organized as follows. Section 2 outlines the governing equations.

Crack modeling in the continuum domain using the extended finite element approach

and coupling method is discussed briefly in this section. Some implementation details

about coupling molecular dynamic code to finite element code are discussed in section

3. Section 4 presents two numerical examples for modeling crack problems. Finally,

the conclusion of this research is presented in section 5.

2 Model Description and Governing Equations

2.1 Definitions

Consider a domain Ω where an existing crack with the surface ∂Ωc is to be simulated.

We define a fine scale region Ωfs modeled by molecular dynamics (MD) and place

its center near the crack front. The rest of the domain is the coarse scale region Ωcs

3



Figure 1: The relation between the fine and the coarse scale areas

where the system is described through a usual continuum formulation1. The number

of atoms in sub-domain Ωfs is denoted by nfs. The outer boundary of Ωcs is denoted

by ∂Ωcs with ∂Ωcs = ∂Ωcs
t ∪ ∂Ωcs

u ∪ ∂Ωcs
c and ∂Ωcs

t ∩ ∂Ωcs
u = ∅, ∂Ωcs

c ∩ ∂Ωcs
u = ∅,

∂Ωcs
t ∩ ∂Ωcs

c = ∅; subscripts u, t and c indicate ’displacement-’, ’traction-’ and ’crack-

’, respectively. Notations are summarized in Fig. 1. This molecular treatment of the

crack front zone enables the description of voids, dislocations and cracks which are

known to strongly influence the initiation and propagation of cracks, see, e.g. Lange

[18] and Ravi-Chandar and Knauss [19].

In this study, a base crystalline material with a given lattice structure is assumed

everywhere. The fine scale region Ωfs is composed of the atoms of this base lattice

structure and the finite elements in this region are deactivated. This is shown in Fig.

2. In the continuum region, Ωcs, the continuum model is activated where the material

behaviour is approximated by the Cauchy-Born rule, [2]. The idea of the Cauchy-Born

rule is to compute the material properties and stress from the same potential used in

the fine scale domain Ωfs, here the Lennard-Jones potential (LJP). In other words at

every point of the continuum model, we have a very small atomistic model with the

same lattice structure and force fields as the fine scale.

The sub-domain Ωcs ∩ Ωfs where the continuum and atomistic descriptions cohabit

is denoted by ΩB and is called the bridging domain, also known as the handshake,

or blending domain. In the bridging domain, the continuum energy and the atomistic

energy are blended through a weighting by complementary functions. One criterion

which should be fullfilled is that the sum of the continuum and the atomistic energy

is unchanged by the coupling method. From a kinematic point of view, in this sub-

domain, the continuum model is coupled to the atomistic model by enforcing compat-

ibility of the displacements of the atoms and that of the nodes.

1In this paper, the superscripts fs and cs denote the fine scale and coarse scale, respectively.
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Figure 2: The solution domain including the crack and the bridging domain.

2.2 Fine Scale Formulation

In an isolated system, the sum of the potential and kinetic energies is constant in time.

This summation is identified as the Hamiltonian and for the atomistic subdomain, it

can be expressed as:

Hfs(xα(t),pfs
α (t)) =

∑

α

1

2mα

pfs
α · pfs

α + W fs(xα(t)) (1)

where xα and mα is the current position vector and mass of atom α respectively.

The location of atom α in the reference and spacial configurations can be related by

displacement vector d:

xα = Xα + dα (2)

pfs
α is the momentum of atom α and defined by

pfs
α = mαẋα = mαḋα (3)

W fs(x) is the potential function which can be due to any kind of force fields, such as

pair-wise interactions or three-body potentials:
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W fs(xα) =
∑

α

W1(xα) +
∑

α,β>α

W2(xα,xβ) + ... (4)

Assuming the external potential is resulting only from a constant external force,

f ext
α , and a pair-wise potential, the total potential can be expressed as:

W fs = −W ext
fs + W int

fs = −
∑

α

f ext
α dα +

∑

α,β>α

Wfs(xα,xβ) (5)

The canonical form of Hamiltonian equations in fine scale can be expressed as:

{

ṗfs
α = − ∂H

∂xα
= −∂W fs

∂xα

ẋα = ḋα = ∂H

∂p
fs
α

= p
fs
α

mα

(6)

Finally, these two equations can be combined to:

mαd̈α = −
∂W fs

∂xα

=
∂W ext

fs

∂dα

−
∂W int

fs

∂dα

= f ext
α − f int

α (7)

In this equation, f int
α is internal force.

2.3 Coarse Scale Formulation

Let the reference and the current configurations of the domain be denoted by Ω0 and

Ω, respectively. The material coordinates of a point in Ωcs
0 are denoted by X and the

spatial coordinates by x. The linear momentum equations are:

∂Pji

∂Xj

+ ρ0bi = ρ0üi (8)

where P is the first Piola-Kirchhoff stress tensor, b is the body force vector per

unit mass, ρ0 is the initial density and u is the displacement vector. The first Piola-

Kirchhoff stress tensor can be calculated from a continuum potential:

P =
∂wcs(F )

∂F
(9)

where wcs is the potential energy per unit volume and F is the deformation gradient

tensor. The total potential energy of the coarse model is:

W int
cs =

∫

Ωcs
0

wcs(F )dΩcs
0 (10)

In the coarse scale, the Hamiltonian is given by:
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Hcs = Kcs + W cs =

∫

Ωcs
0

1

2
ρvT vdΩcs

0 + W cs (11)

W cs = −W ext
cs + W int

cs = −
∑

I

f ext
I uI +

∫

Ωcs
0

wcs(F )dΩcs
0 (12)

where v is the velocity vector and Kcs is the kinetic energy in the coarse scale. In the

continuum sub-domain, the displacement field is approximated by the extended finite

element method (XFEM). In this approximation, the displacement field is decomposed

into a continuous part and a discontinuous part as in Belytschko and Black [20]:

uh (X) =
∑

I∈N

NI (X) uI

︸ ︷︷ ︸

ucont

+
∑

I∈Nb

NI (X) H (fI (X)) aI

︸ ︷︷ ︸

udiscont

(13)

where N is the set of all nodes in the domain and Nb is the set of nodes that belong to

all elements which are completely cut by the crack. The nodal parameters uI and aI

are standard and enriched degrees of freedom, respectively and H is the discontinuous

enrichment (Heaviside) function:

H (f (X)) =

{

1 if f (X) > 0

0 if f (X) < 0
(14)

with

f (X) = sign [n · (XI − X)] minXI∈∂Ωc
‖XI − X‖ (15)

where n is the outward normal to the crack surface. In this study since the crack front

is modeled by the atomistic region, no crack-front enrichment is needed.

2.4 Coupling Method

As mentioned before, in the bridging domain method, the total energy of the system

is a weighted contributions of the fine and coarse models in the bridging domain ΩB.

To implement this concept, a scalar weight function, w, was defined which is unity

outside the fine scale domain, zero inside the fine scale and smoothly varying inside

the blending region:

w(X) =







1 ∀X ∈ Ωcs \ Ωfs

[0, 1] ∀X ∈ ΩB

0 ∀X ∈ Ωfs \ Ωcs.
(16)

The w at any point X can be computed by a normalized distance function:
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Figure 3: The weighting function in the handshake domain in two dimensions

w(X) =
l(X)

l0
(17)

where l(X) is the orthogonal projection of X on the interior boundary of the coarse

domain Ωcs and l0 is the length of this orthogonal projection to the boundary of the

fine scale Ωfs, Fig. 3.

The governing equations are derived from the Hamiltonian of the systems, H ,

which is the sum of the Hamiltonians of each subdomain:

H = (1 − w)Hfs + wHcs

=
∑

α

(1 − w(Xα))
pfs

α · pfs
α

2mα

+ (1 − w)W fs +
∑

I

w(XI)
pcs

I · pcs
I

2MI

+ wW cs

(18)

where H fs and Hcs are the Hamiltonians of the fine and coarse sub-domains. W cs and

W fs are total potential of coarse and fine scales and are defined in Eq. 12 and Eq. 5,

respectively.

The Coarse and fine scale domains are constrained on the bridging domain, ΩB by

the Lagrange multiplier method. In this overlapping domain, the fine scale displace-

ments are required to conform coarse scale displacements. In the Lagrange multiplier

method, the total Hamiltonian is written as:

HL = H + λT g (19)

where λ is Lagrange multipliers vector and g is the gap vector between coarse scale

displacement and fine scale displacement. To compute the Lagrange multiplier un-

knowns we use the method described by Belytschko and Xiao [21]. Finally, we obtain

the following semi-discrete equations of motion. In the following, lower case indices
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indicate the coordinate directions, e.g. i = 1, 2, 3 and the upper case indices indicate

the finite element nodes, e.g. I .

∀I ∈ N
cs ∀i ∈ {1, 2, 3} : MIJ üJi = f ext

Ii − f int
Ii + fλcs

Ii , (20)

∀α ∈ J1, . . . , nfsK, ∀i ∈ {1, 2, 3} : mfs
αd̈fs

αi = f fs
αi + fλfs

αi , (21)

where üJ and d̈A
α are the accelerations of node J and atom α, respectively. Also, the

mass matrix is computed by:

∀I, J ∈ N
cs : MIJ =

∫

Ωcs
0

(1 − w) ρ0NINJdΩcs
0 , (22)

The mass matrix in the coarse scale is diagonalized according to the mass-lumping

scheme for XFEM which was proposed by Menouillard et al. [22]. The internal forces

in the coarse scale are:

∀I ∈ N
cs, ∀i ∈ {1, 2, 3} : f int

Ii =

∫

Ωcs
0

(1 − w) Pij

∂NI

∂Xj

dΩcs
0 , (23)

The forces on each atom are determined from the interatomic potential W as:

∀α ∈ J1 . . . nfsK, ∀i ∈ {1, 2, 3} : f fs
αi = −

∑

β

1

2
(w (Xα) + w (Xβ))

∂W (rαβ)

∂dfs
iβ

,

(24)

where β ranges over all atoms within the cutoff radius of atom α. The forces fλcs in

the coarse scale and fλfs in the fine scale, due to the coupling are given by:

∀I ∈ N
cs, ∀i ∈ {1, 2, 3} : fλcs

Ii =
∑

α∈ΩB
0

λαiNI (Xα) , (25)

and

∀α ∈ J1 . . . nfsK, ∀i ∈ {1, 2, 3} : fλfs
αi = −λαi. (26)

3 Some Implementation Details

The fact that continuum and atomistic (discrete) domains are coupled, creates certain

difficulties in the implementation due to the different nature of the information avail-

able in both domains. For the atomistic part a code named LAMMPS [17] is adopted

here. LAMMPS is a molecular dynamics code which is written in C++ and performs

message-passing via MPI calls.
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The LAMMPS code is coupled to an extended finite element library called PER-

MIX (based on Fortran 2003 standard). The coupling is done via a Fortran 2003

interface using the ISO C BINDING module. This interface allows accessing the

LAMMPS object directly from the Fortran code. A new Lennard-Jones potential is

implemented in LAMMPS to account for the weighting of the atoms in the bridging

domain. Also, to implement the Cauchy-Born rule, a very small atomistic part is de-

fined at the integration point level of the coarse scale which handles stress and stiffness

calculation.

In this implementation we have refined Lagrange multiplier mesh to the atomistic

spacing. The size of the coupling region is based on the finite element mesh and it is

one element thick. To set up the problem, the following steps have been done:

1. Build the atomistic crystal with LAMMPS

2. Minimize the potential energy of the atomistic part to find the stable positions

of the atoms

3. Read the finite element (coarse scale) model definitions and the coupling infor-

mation from the input

4. Build the neighbour lists for the coarse scale

5. Find all the atoms in all elements i.e. the index of element which contains every

atom.

6. Find the active elements, bridging elements and nodes

7. Compute the weights of the nodes and the integration points

8. Find the active atoms, bridging atoms and ghost atoms

9. Create the atomistic groups in LAMMPS based on the last step

10. Recompute atomistic and finite element nodal masses according to their weight-

ing.

11. Set up the Lagrange multiplier points

12. Compute the coupling matrix

Similar to LAMMPS, PERMIX has similar way of domain and neighbour searches

based on bin search method. This is essential for efficient attribution of nodes and

elements to atoms. To find the bridging elements, Step 6, a box is defined. Then

the elements which intersect with this box are located and the bridging elements are

marked. To find the element containing an atom, first, the coarse scale bin that contains

the atom is found. Next, all the elements in this bin are checked if they contain the

atom. This check is done with computing the local coordinates of the atom according

to the element. In our experience, this method is the most efficient way of locating the

atoms. This method is also very general and can be used for any type of element and

geometry. The computed local coordinate, is later used to compute the weighting of

the atoms.
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4 The Numerical Examples

4.1 Edge Crack in a Finite Plate

Consider a three dimensional single crystal with a face centered cubic (FCC) lattice

which has dimensions of 8, 000 × 800 × 100 Å3. In this example a straight crack of

length 620 Å is assumed present in the domain across the whole thickness. Along

the left and right sides of the specimen in the continuum domain, the movement of

nodes in the Y and Z direction is fixed. The continuum model consists of 197,743

hexagonal elements and 692,064 degrees of freedom. The element size is constant

over the domain, about 15 Å. An atomistic domain of size 580 × 365 × 100 Å3 is

placed centered around the crack front. Fig. 4 shows a schematic configuration of the

system.

Since part of the crack falls within the atomistic domain, the crack must be mod-

eled in the atomistic region as well as in the continuum region. We do not follow the

generally adopted method of removing rows of atoms along the crack, as this is some-

what arbitrary and introduces extra parameters in the formulation. Instead, we modify

the neighbour list of the atoms to prevent force transmission across the crack faces.

The atomistic domain is a three dimensional lattice from an FCC crystal with lattice

constant 3.645 Å. Atomic interactions are modeled by the Lennard-Jones potential

with parameters σ = 2.29621 Å, ǫ = 0.467 eV , and a cut-off radius of 4.0 Å; the

mass of all atoms is taken as 63.5 gr

mol
. In this study, we have not take the temperature

into account, since the focus was on the coupling of (extended) finite element method

with Molecular Dynamics. However, in our development, we can easily control the

temperature in the atomistic domain with Nose-Hoover thermostat method by Nose

[23]. To be able to model a realistic three dimensional problem, where periodicity is

usually not available, we have not used any periodic boundary in the system.

The coupling of the continuum and atomistic part is performed within a cubic box

with of dimensions 540 × 340 × 100 Å3. The elements which are cut by this box are

the bridging elements and the atoms which are located inside bridging elements are

the bridging atoms. Consequently, the coupling region is one element wide. With

this configuration the model has 1,626,240 active atoms, 166,815 bridging atoms and

148,088 ghost atoms.

The driving force for the system is introduced through a velocity boundary condi-

tion on the right and left face of the continuum region. A velocity 0.1 Å
pico−seconds

is set

on all the nodes belonging to the right and left boundary of the continuum domain, at

every time step. The time step is 0.003 pico seconds.

Fig. 5 shows the atoms with higher centro-symmetry value, at different time steps.

For the current system the centro-symmetry parameter is a powerful measure of the

local lattice disorder around an atom and may be used to characterize and visualize

whether the atom belongs to a perfect lattice, a defect (e.g. a stacking fault or a

dislocation), or a surface [24]. The centro-symmetry indicator CS is computed as

explained in Kelchner et al. [25]:
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X

Y

Z

Figure 4: Schematic view of the example, bridging domain, atomistic domain and

boundary conditions for an edge crack in finite plate.

CS =

N
2∑

i=1

∣
∣
∣Ri + Ri+N

2

∣
∣
∣

2

, (27)

where N is the number of nearest neighbours for each atom in the underlying lattice of

atoms. For example here N = 12 for the FCC lattice. Ri and Ri+N
2

are vectors from

the atom of interest to a particular pair of nearest neighbours. The value in the sum is

computed for each atom, and the N/2 smallest quantities are used. For an atom on a

lattice site, surrounded by atoms on a perfect lattice, the centro-symmetry parameter

will be 0. It will be also near 0 for small thermal perturbations of a perfect lattice.

Fig. 6 shows the stress contours at four different time steps which are the same time

steps as in Fig. 5. The atomistic stress computed here is the virial stress tensor. The

symmetric virial stress tensor for pair potentials such as the one used here is defined

in Robert [26] and Subramaniyan and Sun [27]:

σV
ij =

1

V

∑

α

[

1

2

N∑

β=1

(

Rβ
i − Rα

i

)

Fαβ
j − mαvα

i vα
j

]

(28)

where (i, j) range over the spatial directions, x, y, z. β ∈ J1, . . . , NK ranges over the

N neighbors of atom α, Rα
i is the coordinate of atom α in the i direction, Fαβ

j is

the force on atom α from atom β along the j direction, V is the total volume, mα is

the mass of atom α and vα is the velocity of atom α. The definition of virial stress

involves the instantaneous velocities only due to thermal fluctuations. Note that to

obtain the equivalent continuum Cauchy stress, the virial stress from the molecular
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(a) (b)

(c) (d)

Figure 5: The propagation of the crack front and dislocations shown with atoms with

high centro-symmetry value in different time steps (a) step 32,400, (b) step 33,800,

(c) step 49,800, (d) step 63,400.
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(a) (b)

(c) (d)

Figure 6: The stress contour of the specimen in different time steps (a) step 32,400,

(b) step 33,800, (c) step 49,800, (d) step 63,400.
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dynamics (MD) simulations has to be averaged over time and space, as explained in

Buehler [28].

In Fig. 6(a) and (b) a stress concentration is visible, that is initially confined at the

crack front; subsequently when propagation occurs, the stress waves are emitted from

the crack tip. From Fig. 6(c) and (d) the surface effects of the third dimension are also

evident. From this figure we also notice the stress distribution around the dislocations

and the crack. Such complex mechanisms of crack and dislocations could not be

predicted by any classical continuum description of motion.

4.2 Double-Edge-Cracked Specimen Under Combination of Shear

and Tension

In this example, a double-edge-cracked specimen was considered. Here, we have two

cracks under combination of shear and tension loading. Fig. 7 shows the geometry of

the example, location of the cracks and boundary conditions. For modeling continuum

domain, 55778 elements and 254016 degrees of freedom were used. The dimensions

of the specimen were 2, 000×2, 000×20 Å3. For the atomistic domain, a cubic cell of

1, 100 × 1, 100 × 20 Å3 was considered in the middle of the continuum domain. Two

750Å length edge cracks were put in the middle of both lateral sides of the domain.

The atomistic domain covers both crack tips. The specimen was fixed at the bottom

surface and a combination of shear and tension velocity boundary conditions were

applied at the top surface, Fig. 7. The velocities in x and y directions were 0.1 and

0.1 Å
pico−seconds

respectively. The material parameters were considered the same as the

previous example.

The coupling of the continuum and atomistic part is performed within a cubic box

with of dimensions 1050×1050×20 Å3. Same as the previous example, the coupling

region is one element wide. Finally, the model has 2,094,840 active atoms, 93,804

bridging atoms and 72,366 ghost atoms.

Fig. 8 shows the history of the virial stress in the atomistic domain. Fig. 8 (a)

shows the time of dislocation nucleation. Fig. 8 (b) and (c) show the propagation of

dislocation and crack nucleation respectively. Fig. 8 (d) represent the crack propaga-

tion direction. Fig. 9 shows the same stress history for whole specimen. Here, the

shear stress was plotted instead.

5 Conclusion

We presented a coupling method for bridging a three dimensional extended finite ele-

ment treatment of cracks and molecular dynamics. This method is based on an over-

lapping domain-decomposition scheme where the displacement compatibility condi-

tions in the overlapping sub-domain are enforced by Lagrange multipliers. We showed

how the method can be successfully used to simulate the propagation of a cracks and

dislocations, where an atomistic domain is placed on top of the three dimensional
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Figure 7: Schematic representation of the double-edge-notched specimen under com-

bined loading, including bridging domain, atomistic domain and boundary conditions.

(a) (b)

(c) (d)

Figure 8: The virial stress contours of the atomistic domain in different time steps (a)

step 25,800, (b) step 31,800, (c) step 35,800, (d) step 77,200.
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(a) (b)

(c) (d)

Figure 9: The stress contours of of the specimen in different time steps (a) step 25,800,

(b) step 29,600, (c) step 43,800, (d) step 64,800.
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extended finite element domain, around the crack front. We also computed the centro-

symmetry parameter and the virial stress tensor in the atomistic region. We have

observed that our three dimensional coupled method is capable of representing the

crack and dislocation propagation for much fewer degrees of freedom than a direct

numerical simulation.
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