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Abstract

A standard model for non-local diffusive transport, applicable when the
heterogeneity length scales are power-law distributed, is to represent the flux in
terms of a fractional derivative. Here, a recently proposed scheme for fractional
diffusive transport, the control volume weighted flux scheme (CVWEFS), which is
based on Caputo fractional derivatives, is extended to operate in two or more
dimensions. The essential feature in the CVWFS is the representation of the flux at a
point as a weighted sum of gradients operating up- and down-stream of that point.
Following presentation of the scheme, the convergence and accuracy of the
CVWEFS, using alternative weightings, is demonstrated and its accuracy illustrated
by comparing numerical predictions with two-dimensional analytical solutions.
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1 Introduction

In a diffusion process an initial pulse will spread with a length scale ¢ ~ £*. In some
processes, however, due to the presence of heterogeneities, the time exponent for the
spreading length scale can differ from the value of n=), . Such a process is
referred to as anomalous diffusion, with exponent 1>#n > )4 called super-diffusion
andn < )4 called sub-diffusion [1,2]. Anomalous diffusion can been seen in a
number of physical systems including solute transport in a porous media [3,4,5,6,7],
earth-surface sediment transport [8,9,10,11], stream solute transport [12], heat
transfer in porous media[13], moving boundary problems in heat transfer [2,14] and
drug release[15].

In conventional diffusion processes, the flux at a point is proportional to the local
gradient of the potential ¢ with the x-component given by
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where v is the suitably dimensioned diffusivity coefficient. In contrast, cases where
the length scales of the heterogeneities in the system have a power-law distribution
the flux is controlled by non-local properties; a situation that leads to anomalous
super-diffusion. A number of theoretical results [2,8,15,16] indicate that this non-
local process can be effectively modeled in terms of derivatives of fractional order
O0<a=:2<1. One such realization of this model is to express the flux as a

combination of left and right-sided Caputo fractional derivatives
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where —1<f <1 is a bias weighting between the left and the right-sided
derivatives and 0 < a, <1 is the order of the derivative—which can also be viewed

as a measure of the non-locality in the system. The left sided (L) and right sided (R)
derivatives in Equation (2) are respectively defined by [17]
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where ['is the gamma function. Note that the Caputo definition in Equation (2) and
Equation (3) is preferred over the alternative Reimann-Liouville definition because
conditions at the boundaries can be more easily constructed to match physically
meaningful conditions and the Caputo fractional derivative of a constant is zero
[17].

Under the assumption that the heterogeneities in the coordinate directions are
statistically independent, see discussions by Tadjeran and Meerschaert [18], and that
the domain is scaled so 0 <x<1;0< y <1 a general fractional diffusion equation in

two dimensions can be written as
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where S is a source term, and the definition of g, is simply obtained by replacing y

for x in Equation (2). In terms of finding approximate solutions of the form in
Equation (4), previous research has been based on the so called one-shift Griinwald
approximation [8,12,17,18,19,20,21,22] or the alternative L1/L2 approximation
[1,6,7,12,22,23,24] for fractional derivatives. Alternatively, Ervin and Roop [25,26]
presented the theoretical framework for a Galerkin finite element
approximation[25,26] for steady state fractional advection dispersion equations. In



particular, Meerschaert and Tadjeran used the one-shift Griinwald approximation
with a fully implicit ADI [10] and Crank-Nicolson ADI [18] time stepping schemes
and Yang et. al. [27] used the L1/L2 approximation in both finite element and finite
difference solutions.

Recently Voller et. al. [28] obtained a solution to the one-dimensional form of
Equation (4) using a discrete control volume approach — called the Control Volume
Weighted Flux Scheme (CVWEFS). The novelty of the approach lies in modeling the
local diffusion flux at local control volume face as the weighted average of gradients
across the control volume faces up- and down-stream, and creates a physical analog
for the non-local diffusion that can be implemented directly into a control volume
discretization. Here, we will expand the CVWEFS to find numerical solutions for the
two-dimensional transient Caputo fractional diffusion problem in Equation (4).
Where possible this approach will be verified by using available analytical solutions.

The paper is laid out as follows. In the next section a brief overview of the
CVWES approach applied to a one-dimensional version of Equation (4) is provided
and possible alternative schemes for choosing the gradient weights are provided
with associated error analysis. Following, the CVWEFS approach is generalized to
handle the full two-dimensional form of Equation (4). The work concludes with a
number of test problems that demonstrate the relative accuracy of the CVWFS when
compared to the one-shift Griinwald [8,12,17,18,19,20,21,22] and L1/L2
approximations [1,6,7,12,22,23,24], and verify the proposed two-dimensional
CVWES on solving problems with known analytical solutions.

2  Overview of the CYVWFS

Before demonstrating the discretization of the CVWEFS in two-dimensions, it is
important to understand the main characteristics of the method in one-dimension.
The CVWES is a discrete control volume (or finite volume) method that was
developed to numerically solve non-local diffusion transport problems in the scaled
domain0 < x <1, [28]. In this approach a uniformly spaced grid of NX+1 nodes a
distance Ax=1/NX apart is assumed—note this will place nodes on the boundary
(see Figure 1).
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Figure 1: Grids for calculating diffusion flux in one-dimension with a). local
diffusion and b). non-local diffusion (Figure modified from Voller et al. Figure 1
[28]). Fluxes from the W-west and E-east are noted at node 7,J.



In a standard approach the flux into the control volume about node / from the left,
defined as ¢,,,, , would be estimated in terms of the potential gradient at the control

volume face located at x = x, —Ax/2. In a similar manner the flux out to the right,
9 oust, » Would be determined solely by the potential gradient at the face located at

X =Xx, + Ax/2 . By contrast, in the CVWFS these fluxes are calculated in terms of a
weighted average of the potential gradients across multiple control volume faces up-
and down-stream of node / (see Figure 1). There are two end-members in this
treatment. In the first the flux on a given face of the control volume is calculated in
terms of the potential gradients at and on all the neighboring control volume faces
positioned to the Right of the given face. In this way the flux at the east and west
faces of the I™ control volume are written as the weighted average
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where W, are appropriately selected flux weights. Note, in Equation (5), only faces

that lie within the domain0 < x <1are included in the weighted sum and that the
upper limit of the summation differ by one; a device, as detailed in Voller et. al.
[28], that leads to desirable numerical properties. The opposite of Equation (5) is to
write the face fluxes as a weighted sum of gradients at the faces that lie to the Left of
the given face, i.e.
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In applying Equations (5) and (6) to solve fractional diffusion problems, Voller et.
al. [28] proposed using the power law weights
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The following comments are made:

1. As shown in [28], a connection to the Caputo derivate definition in Equation
(3) is established by noting that the components in Equations (5) and (6) are



respectively formal approximations of ¢~ and ¢® defined in Equation (2)
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generated by Equation (7).

when a constant of

is multiplied by the weights

2. The form of the correction u allows for the recovery of the correct local
approximation for the flux asa — 1.

3. A discrete flux balance over a control volume, using Equations (5) and/or (6),
will lead to a system of discrete equations that, in a steady state case, will be
diagonally dominant.

3 Alternative Weights

The power-law weights in Equation (7) can be replaced by alternative weighting
schemes derived from other fractional derivative algorithms developed in the
literature.  One example is the L1/L2 algorithm for approximation of Caputo
derivatives [1,6,12,22,24,26,29,30]. When applied to the CVWFS framework the
L1/L2 weights are given by

W = [ e _(k—1)" ]Axl‘“ , 1<k<NX 8)

Another example are weights obtained from the classical Griinwald approximation
for a fractional derivative [8,12,17,21], which can be manipulated to the CVWEFES
form in Equations (5) and (6) to provide the following alternative definition for the
weights in Equation (7)

k
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Note when these weights are used in the CVWEFS the resulting scheme will match
the so called one-shift Griinwald schemes for fractional diffusion previously
reported in the literature [8,12,17,18,19,20,21,22,28].

Table 1 compares values of Ax“"'W, /T(2-a) (k=1 .. 5) for the case a =0.3,

using all three methods. Observe the close match between the CVWES weights
(Equation (7)) and the Griinwald weights (Equation (9)) for all k=1,2... and the
initial differences in the L1/L2 weights (Equation (8)). In respect to the first
observation, it is noted that close agreement between the Griinwald and CVWEFS
weights is achieved through the choice of the correction factor x in Equation (7);

which enforces an exact match for the first weight, k=1.



k CVWFS Grinwald L1/L2
1 1.0000 1.0000 1.1005
2 0.6936 0.7000  0.6873
3 0.5910 0.5950 0.5868
4
5

0.5328 0.5355  0.5297
0.4933 0.4953  0.4910
Table 1: Alternative normalized weights for CVWFS

4 Extension of CVWFS to 2D Caputo Fractional
Diffusion Equations

The approximate solution of the 2-D fractional diffusion problem in Equation (4)
requires a straight forward extension of the 1-D CVWEFS [28] outlined above. The
key idea is to treat the y derivative approximations to the north (above) and south
(below) of node IJ in the same fashion as the left and right hand x derivative
approximations defined by Equations (5) and (6). The starting point is to assume a
scaled domain of (NX +1)x(NY +1) nodes, where node 1.J is located on the I™

column and J™ row of the discretization displayed in Figure 2.
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Figure 2: Grid for calculating diffusion flux in two-dimensions. Subscripts on /
indicate direction of non-localities. Fluxes from N-north, S-south, E-east, W-west
are noted at node 1,J.



Then, following directly from Equations (5) and (6), the fluxes in the x-direction on
the east and west faces of the control volume around node /,J can be written as the
weighted averages
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The weighted average of fluxes in the y-direction is restricted to that of gradients
across the faces of control volumes along column /. The north and south flux at
node 1,J based on the derivatives from the left and right of the control volume can
then be written as:
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Here, NXAx = NYAy and W and W, are the flux weight at each control volume
face defined by Equation (7) using «, and & , respectively.

Using the approximations of Equation (11-14) the components of divergence of
the fractional diffusion on the right hand side of Equation (4) can be approximated
as
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Hence, on using an explicit approximation in time, the following first order accurate
in time and second order accurate in space scheme can be generated for the
governing Equation (4)

— aqy
1,J Oy

new aQX
¢1,J = ¢I,J + At[
ox

} +ASS, (16)
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where new denotes the new temperature at node 7.J at time ¢+ A¢. Note, a steady
state solution of Equation (4) would also be based on Equation (16). In this case,
however, new would designate a pseudo-time step in an iterative solution.

As noted in [28] the CVWEFS can naturally handle fixed value boundary
conditions by simple substitution of the given values at the extrema of the
summations in Equations (11) and (14). An appropriate substitution is also made to
account for the prescription of a fixed flux condition. For example if a fixed flux ¢

is applied on the right boundary x = 1, an iterative update of the boundary values is
made to ensure a correct boundary flux calculation, see [28]

aqx _ 1+ ﬂx qies’mxu,/ -9 + 1- ﬂx qie”wm,x -4

(17)
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where the factor of 0.5 in the denominator accounts for the half sized control volume
at the boundary.

While Equation (16) is the preferred form for computations it is worthwhile for
analysis to expand Equation (16) using Equations (11-15) to arrive at the following
point scheme

Nx+1 NY+1
new
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where the a’s are coefficients as defined in [28] for one-dimension. In Equation (18)
it is noted, assuming a diffusivity of 1.0 for notational convenience, that the only
possible negative coefficient is

Axax_l X x
a,, =1+At F(Z—ax)Ax”"* (—ZW1 +W; )+

Ayoz),—l
r2-a, ™

(Comy+wy)| (19)

Consistent with known behaviors in numerical solutions of normal diffusion,
Equation (18) shall provide a stable solution provided all the coefficients on the
right-hand side are positive. Therefore, setting a, , 20 allows for derivation of
stability criteria. In this way using the observation from Table 1 that, for all o’s
W, =T(2-a)Ax" and W, =~ (1-a)[(2 - a)Ax"™ a stability criterion for Equation
(16) sets the time step as
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consistent with stability criteria for the one-dimensional CVWFS [28] and other
explicit fractional transient diffusion schemes in the literature [19].

5 Testing and Results

5.1 Comparison of Weighting Schemes

As noted above with the proposed CVWES three alternative weighting schemes
can be used, the original weights suggested by Voller et al [28] (Equation (7)),
weights based on the L1/L2 algorithm (Equation (8)) and weights derived from the
Griinwald approximation (Equation (9)). To provide an illustration on the relative
accuracy of these three alternatives we consider the following one-dimensional
Caputo fractional diffusion equation

ﬁ(ﬂjzo,osml (21)
ox\ ox“
With

#(0)=1,and ¢(1)=0 (22)

The analytical solution to Equation (21) with Equation (22) is
T=1-x" (23)

The accuracy of each respective flux weight system is analyzed by inserting each
weight into the 1-D steady state problem in the x-direction of Equation (16) using
the pseudo time stepping CVWES approach. The L-infinity norm—maximum
absolute error—was calculated for each weighting scheme for varying grid sizes and
a ’s (see Table 2).

As might be expected from the close match between the weights in Table 1,
similar values of the relative error between the Griinwald and CVWFS weights is
observed, with both methods being significantly more accurate than predictions
obtained with the L1/L2 weights. Based on the above tests, the remaining
applications of the CVWEFS will all use the original weights suggested by Voller et
al [28] given in Equation (7) and will be implemented on grids of
size Ax,Ay <0.00625.



Ax CVWEFS Grinwald LI1/L2
a=03
0.10000 0.04820 0.04661 0.08591
0.05000 0.04070 0.03981 0.07253
0.02500 0.03361 0.03312 0.05998
0.01250 0.02748 0.02722 0.04914
0.00625 0.02237 0.02224 0.04009
a=0.7
0.10000 0.01762 0.01633 0.03212
0.05000 0.01137 0.01064 0.02117
0.02500 0.00713 0.00673 0.01348
0.01250 0.00441 0.00420 0.00844
0.00625 0.00271 0.00260 0.00524

Table 2: L-infinity norm for CVWES approximate solution to the one-dimensional
fractional diffusion problem in Equation (25) utilizing each alternative weights in
Equations (7)-(9)

5.2 2D Steady State Problems

The initial test problem for the two-dimensional CVWES is a steady state problem
with constant diffusivity v =1 and fixed boundary conditions. The general Caputo
fractional diffusion equation for this problem is Equation (4) with the transient and
source term neglected, i.e.

L cg)+Z(q,)=0

ox oy
Y AT T Y o
2 & 2 f(-x)™
g o P 128, o
2 ox™ 2 o(-x)
Two alternative boundary conditions are considered. The first sets
#(x,0)=1-x*
#0.y)=1-y" (25)
#lx.1)=p(1.y)=0
The second sets
#(x.0)=(1-x)"
¢(0=y):(l_y)a)
#(x.1)=4(1,y)=0 (26)



In the limit case of g, = 8, =1 (only selecting the left-hand fractional derivatives)
the solution to Equations (24) and (25) is

#x.y)=1—x Ji-y) 27)

In the alternative limit case of S, =f, =—l(only selecting the right-hand
derivatives) the solution to Equations (24) and (26) is

#lx,y)=(1-x)"(1-y)" (28)

Solutions that may be verified by direct differentiation and substitution in Equation
(24) using the following standard Caputo fractional derivatives relationships

aa

Ax® = AT(a +1), A= f(y) (29)
ox*
o AT
) flx)=—= fll=x) x<lo] (30)

The CVWES solutions of the above problems are achieved using the approximations
of Equations (11)-(15) in the pseudo time step iterative solver of Equation (16). The
CVWEFS solution to each set of boundary conditions was solved
usinga, =, =03, =4 =1 and a,=a,=0.7,8, =, =-1; a grid spacing
of Ax = Ay =0.025 and a pseudo time Az = 0.0005 —sufficient for stability in both
cases—were also selected.

Table 3 provides the maximum absolute error for each problem using all three
weighting schemes. Again, the CVWFS and Griinwald weights are in close
agreement. Figure 3 displays the CVWES values along the line of symmetry (x=0,
y=0 to x=1, y =1) with the available analytical solutions. The results in Figure 3 are
sufficient to verify that the proposed CVWES can produce accurate solutions to two-
dimensional fractional diffusion equations utilizing the weights provided by
Equations (7)-(9).

Equations = CVWFS Griinwald LI1/L2
(24),(25),(27) 0.0294 0.0282  0.0512
(24),(26),(28)  0.0057 0.0053  0.0105

Table 3: Maximum absolute error of CVWEFS approximation using alternative
weights on grid spacing of Ax = Ay =0.025
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Figure 3: CVWFS and random walk solution to steady state problems. Values
presented along the line of symmetry (x=0, y=0 to x=1,y=1).

5.2 A Transient Problem

Similar to work in [18,20] the following left-hand only fractional diffusion transient
problem is posed

20028 2,28 s ”
ot Ox ox* ) Oy oy
with boundary and initial conditions

#(x,0,1) = $(0,,6)=0

1, ,t — -t _.3.6

o yt)=e"y a2

¢(x,l, t) =e'x’

¢(x’ y,O) — x3y346

and a source term set as

12



S(x,y,1) = —(1+ 2xp)e " x* y** (33)
Setting the diffusivities to

F(4 -a, ) 2 y

T30
6 2+a (34)
vV, = X
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Leads to the following analytical solution for Equations (31)-(34)
_ 4.3.36
#x,y,1)=e'x'y (35)

Which is readily verified by direct differentiation and substitution in Equation (31)
using the following standard Caputo fractional derivative relationship

0" ¥ = F(77+1) e (36)
ox*“ rh+1-a)

Here in addition to testing the ability of the CWVFS to deal with transient
problems its ability to deal with different localities in the coordinate directions is
also tested by setting , =0.8ande, =0.6. In the CVWFS solution (see scheme

defined by Equation (16)) the spatial and temporal grid spaces were set at
Ax=Ay =0.025 and Af=0.0005, choices that satisfy the stability criteria of

Equation (20). Prediction of the profile along the line of symmetry (x=0, y=0 to x=1,
y=1) at time ¢ = 1 are compared with the analytical solution in Figure 4. The
maximum absolute error for this grid size is 5.77E-4. The maximum error, at the
same time, for a grid size set at Ax =Ay =0.0125and Az =0.0001 drops to 4.98E-5.

Both maximum errors were found to be consistent with those reported in the
literature using alternative solution schemes [18,20].

6 Conclusions

Recent work introduced the so-called control volume weighted flux scheme
(CVWES) for solving one-dimensional steady and transient diffusion equations in
which the flux term is expressed in terms of a fractional derivative of order 0 < <1
[28]. An approach that can be viewed as an alternative to methods based on the
L1/L2 [1,6,7,12,22,23,24] or one-shift Griinwald [8,12,17,18,19,20,21,22]
approximations. The main contributions of this paper have been to:

1. Explicitly test the relative accuracy of the previously proposed CVWFS.
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Figure 4: CVWES and exact solution to transient problem. Values presented along
the line of symmetry (x=0, y=1 to x=1, y=1).

2. Demonstrate that the CVWEFS can also operate with weights derived from
previous literature schemes.

3. Extend and verify the CVWEFS for the solution of two-dimensional transient
and steady-state fractional diffusion equations.

In the context of a particular one-dimensional test problem, it is clearly
demonstrated that the accuracy of the CVWFS using the proposed weights is of the
same order as the scheme operating with the Griinwald weights. Further, for a full
range of non-locality values «, including different values in the coordinate
directions, solutions of the extended two-dimensional CVWFS are in good
agreement with available analytical solutions. A multi-dimensional CVWEFS can be
derived for use on a uniform, structured grid by simply expanding the
approximations of equations (11-16) to higher dimensions. Further work will focus
on extension of the CVWES to operate on unstructured finite element grids.
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